These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 9082914)
41. Investigation of the H2-oxidizing activities of Alcaligenes eutrophus H16 membranes with artificial electron acceptors, respiratory inhibitors and redox-spectroscopic procedures. Podzuweit HG; Arp DJ; Schlegel HG; Schneider K Biochimie; 1986 Jan; 68(1):103-11. PubMed ID: 3089303 [TBL] [Abstract][Full Text] [Related]
42. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. Furukawa K; Suyama A; Tsuboi Y; Futagami T; Goto M J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):534-41. PubMed ID: 15959725 [TBL] [Abstract][Full Text] [Related]
43. Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. van de Pas BA; Gerritse J; de Vos WM; Schraa G; Stams AJ Arch Microbiol; 2001 Sep; 176(3):165-9. PubMed ID: 11511863 [TBL] [Abstract][Full Text] [Related]
44. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Sieber JR; Le HM; McInerney MJ Environ Microbiol; 2014 Jan; 16(1):177-88. PubMed ID: 24387041 [TBL] [Abstract][Full Text] [Related]
45. Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB. Van Kuijk BL; Schlösser E; Stams AJ Arch Microbiol; 1998 Apr; 169(4):346-52. PubMed ID: 9531636 [TBL] [Abstract][Full Text] [Related]
47. Purification and properties of the formate dehydrogenase and characterization of the fdhA gene of Sulfurospirillum multivorans. Schmitz RP; Diekert G Arch Microbiol; 2003 Dec; 180(6):394-401. PubMed ID: 14610638 [TBL] [Abstract][Full Text] [Related]
48. Low-potential cytochrome b as an essential electron-transport component of menaquinone reduction by formate in Vibrio succinogenes. Unden G; Kröger A Biochim Biophys Acta; 1983 Nov; 725(2):325-31. PubMed ID: 6639943 [TBL] [Abstract][Full Text] [Related]
49. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Fung JM; Morris RM; Adrian L; Zinder SH Appl Environ Microbiol; 2007 Jul; 73(14):4439-45. PubMed ID: 17513589 [TBL] [Abstract][Full Text] [Related]
50. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. DiStefano TD; Gossett JM; Zinder SH Appl Environ Microbiol; 1992 Nov; 58(11):3622-9. PubMed ID: 1482184 [TBL] [Abstract][Full Text] [Related]
51. Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene. Brennan RA; Sanford RA; Werth CJ Water Res; 2006 Jun; 40(11):2125-34. PubMed ID: 16725176 [TBL] [Abstract][Full Text] [Related]
52. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Kröger A; Winkler E; Innerhofer A; Hackenberg H; Schägger H Eur J Biochem; 1979 Mar; 94(2):465-75. PubMed ID: 428397 [TBL] [Abstract][Full Text] [Related]
53. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Löffler FE; Tiedje JM; Sanford RA Appl Environ Microbiol; 1999 Sep; 65(9):4049-56. PubMed ID: 10473415 [TBL] [Abstract][Full Text] [Related]
54. Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51. Reinhold A; Westermann M; Seifert J; von Bergen M; Schubert T; Diekert G Appl Environ Microbiol; 2012 Nov; 78(22):8025-32. PubMed ID: 22961902 [TBL] [Abstract][Full Text] [Related]
55. Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Lohner ST; Spormann AM Philos Trans R Soc Lond B Biol Sci; 2013 Apr; 368(1616):20120326. PubMed ID: 23479755 [TBL] [Abstract][Full Text] [Related]
56. In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Chang YC; Okeke BC; Hatsu M; Takamizawa K Bioresour Technol; 2001 Jun; 78(2):141-7. PubMed ID: 11333032 [TBL] [Abstract][Full Text] [Related]
57. Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. Ma K; Loessner H; Heider J; Johnson MK; Adams MW J Bacteriol; 1995 Aug; 177(16):4748-56. PubMed ID: 7642502 [TBL] [Abstract][Full Text] [Related]
58. Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment. Omae K; Yoneda Y; Fukuyama Y; Yoshida T; Sako Y Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526793 [No Abstract] [Full Text] [Related]
59. Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. de Bok FA; Roze EH; Stams AJ Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):283-91. PubMed ID: 12448727 [TBL] [Abstract][Full Text] [Related]
60. Tetrachloroethene respiration in Sulfurospirillum species is regulated by a two-component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies. Esken J; Goris T; Gadkari J; Bischler T; Förstner KU; Sharma CM; Diekert G; Schubert T Microbiologyopen; 2020 Dec; 9(12):e1138. PubMed ID: 33242236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]