These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9083327)

  • 1. Resistance to chemotherapeutic antimetabolites: a function of salvage pathway involvement and cellular response to DNA damage.
    Kinsella AR; Smith D; Pickard M
    Br J Cancer; 1997; 75(7):935-45. PubMed ID: 9083327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of both salvage and DNA damage response pathways on resistance to chemotherapeutic antimetabolites.
    Pickard M; Kinsella A
    Biochem Pharmacol; 1996 Aug; 52(3):425-31. PubMed ID: 8687496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonucleotide reductase R2 gene expression and changes in drug sensitivity and genome stability.
    Huang A; Fan H; Taylor WR; Wright JA
    Cancer Res; 1997 Nov; 57(21):4876-81. PubMed ID: 9354452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inefficient growth arrest in response to dNTP starvation stimulates gene amplification through bridge-breakage-fusion cycles.
    Poupon MF; Smith KA; Chernova OB; Gilbert C; Stark GR
    Mol Biol Cell; 1996 Mar; 7(3):345-54. PubMed ID: 8868464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-strand breaks in DNA by 1-beta-D-arabinofuranosylcytosine and enhanced resistance frequency to N-phosphonoacetyl-L-aspartate.
    Chen Y; Goz B
    Anticancer Res; 1991; 11(1):301-4. PubMed ID: 1850218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enhancement of the frequency of resistance to N-phosphonoacetyl-L-aspartate and methotrexate by 1-beta-D-arabinofuranosylcytosine: the effect of dipyridamole.
    Goz B; Jeffs L
    J Pharmacol Exp Ther; 1994 Aug; 270(2):480-4. PubMed ID: 8071840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible role for topoisomerase II in cell death and N-phosphonoacetyl-L-aspartate-resistance frequency and its enhancement by 1-beta-D-arabinofuranosyl cytosine and 5-fluoro-2'-deoxyuridine.
    Goz B; Bastow KF
    Mutat Res; 1997 Aug; 384(2):89-106. PubMed ID: 9298118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological and biochemical interactions of N-(phosphonacetyl)-L-aspartate and 5-fluorouracil in beagles.
    Miller AA; Moore EC; Hurlbert RB; Benvenuto JA; Loo TL
    Cancer Res; 1983 Jun; 43(6):2565-70. PubMed ID: 6189583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high-protein diet on pyrimidine synthesis and response to PALA in mouse tissues.
    Zaharevitz DW; Grubb MF; Hyman R; Chisena C; Cysyk RL
    J Natl Cancer Inst; 1993 Apr; 85(8):662-6. PubMed ID: 8468725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1-beta-D-arabinofuranosylcytosine enhancement of resistance to several antineoplastic drugs in mammalian tissue culture cells.
    Goz B; Carl PL; Tlsty TD
    Mol Pharmacol; 1989 Sep; 36(3):360-5. PubMed ID: 2571071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collateral sensitivity to N-(phosphonacetyl)-L-aspartic acid in a line of P388 leukemia cells selected for resistance to L-(alpha S, 5S)-alpha-amino-3- chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin).
    Ardalan B; Jayaram HN; Johnson RK
    Cancer Res; 1983 Apr; 43(4):1598-601. PubMed ID: 6831405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamster cells with increased rates of DNA amplification, a new phenotype.
    Giulotto E; Knights C; Stark GR
    Cell; 1987 Mar; 48(5):837-45. PubMed ID: 3815526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism-based model for tumor drug resistance.
    Kuczek T; Chan TC
    Cancer Chemother Pharmacol; 1992; 30(5):355-9. PubMed ID: 1505073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor resistance to antimetabolites.
    Kinsella AR; Smith D
    Gen Pharmacol; 1998 May; 30(5):623-6. PubMed ID: 9559310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of fluorouracil by N-(phosphonacetyl)-L-asparate: a review.
    Martin DS; Kemeny NE
    Semin Oncol; 1992 Apr; 19(2 Suppl 3):49-55. PubMed ID: 1557657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separate pathways for p53 induction by ionizing radiation and N-(phosphonoacetyl)-L-aspartate.
    Chen CY; Hall I; Lansing TJ; Gilmer TM; Tlsty TD; Kastan MB
    Cancer Res; 1996 Aug; 56(16):3659-62. PubMed ID: 8706003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage.
    Paulson TG; Almasan A; Brody LL; Wahl GM
    Mol Cell Biol; 1998 May; 18(5):3089-100. PubMed ID: 9566927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase I and clinical pharmacological evaluation of biochemical modulation of 5-fluorouracil with N-(phosphonacetyl)-L-aspartic acid.
    Casper ES; Vale K; Williams LJ; Martin DS; Young CW
    Cancer Res; 1983 May; 43(5):2324-9. PubMed ID: 6831457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with N-phosphonacetyl-L-aspartate, folinic acid, and interferon alfa.
    Harte RJ; Matthews JC; O'Reilly SM; Tilsley DW; Osman S; Brown G; Luthra SJ; Brady F; Jones T; Price PM
    J Clin Oncol; 1999 May; 17(5):1580-8. PubMed ID: 10334547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction to 5-fluorouracil modulation.
    Martin DS
    Cancer Invest; 1990; 8(2):257-8. PubMed ID: 2400944
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.