These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9083800)

  • 1. Automatic head positioning system using PSD-equipped camera-based photostereometry and a 5-degree-of-freedom robotized chair: calibration and accuracy verification.
    Nakamura Y; Hayashi T; Takeda T; Katoh K; Miyakawa M; Itoh M
    Front Med Biol Eng; 1997; 8(1):47-63. PubMed ID: 9083800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy verification of a PSD-equipped camera-based photostereometric system developed for measuring cranial movements in six degrees of freedom.
    Hayashi T; Nakamura Y; Takeda T; Miyakawa M; Katoh K
    Front Med Biol Eng; 1996; 7(3):189-205. PubMed ID: 8882905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positional reproducibility of the patient's head normalized by a robotized chair-based automatic head-positioning system, Racs-N.
    Nakamura Y; Hayashi T; Takeda T; Katoh K; Miyakawa M; Itoh M
    Front Med Biol Eng; 1997; 8(3):179-96. PubMed ID: 9444511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-resolution line sensor-based photostereometric system for measuring jaw movements in 6 degrees of freedom.
    Hayashi T; Kurokawa M; Miyakawa M; Aizawa T; Kanaki A; Saitoh A; Ishioka K
    Front Med Biol Eng; 1994; 6(3):171-86. PubMed ID: 7727316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel articulator that reproduced jaw movement with six-degree-of-freedom.
    Nishigawa K; Satsuma T; Shigemoto S; Bando E; Nakano M; Ishida O
    Med Eng Phys; 2007 Jun; 29(5):615-9. PubMed ID: 17027315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust real-time robot-world calibration for robotized transcranial magnetic stimulation.
    Richter L; Ernst F; Schlaefer A; Schweikard A
    Int J Med Robot; 2011 Dec; 7(4):414-22. PubMed ID: 21834131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different head positions on the jaw closing point during tapping movements.
    Yamamoto T; Nishigawa K; Bando E; Hosoki M
    J Oral Rehabil; 2009 Jan; 36(1):32-8. PubMed ID: 18976269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of gaze orientation under unrestrained head movements.
    Ronsse R; White O; Lefèvre P
    J Neurosci Methods; 2007 Jan; 159(1):158-69. PubMed ID: 16890993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Detection and Reproduction of Natural Head Position in Stereo-Photogrammetry.
    Hsung TC; Lo J; Li TS; Cheung LK
    PLoS One; 2015; 10(6):e0130877. PubMed ID: 26125616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.
    Wagner B; Stüber P; Wissel T; Bruder R; Schweikard A; Ernst F
    Med Phys; 2014 Aug; 41(8):082701. PubMed ID: 25086557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Intraoral Six-Degrees-of-Freedom Jaw Movement Tracking Method Using Magnetic Fingerprints.
    Morikawa K; Isogai R; Nonaka J; Yoshida Y; Haga S; Maki K
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensation for the effects of head acceleration on jaw movement in speech.
    Shiller DM; Ostry DJ; Gribble PL; Laboissière R
    J Neurosci; 2001 Aug; 21(16):6447-56. PubMed ID: 11487669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional significance of the coupling between head and jaw movements.
    Koolstra JH; van Eijden TM
    J Biomech; 2004 Sep; 37(9):1387-92. PubMed ID: 15275846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum likelihood estimation in calibrating a stereo camera setup.
    Muijtjens AM; Roos JM; Arts T; Hasman A
    Med Phys; 1999 Feb; 26(2):310-8. PubMed ID: 10076990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the simulation robot for mandibular movements with the patient-specific 3-dimensional plaster model and mandibular movement data: clinical application of the physical simulation robot.
    Ikawa T; Ogawa T; Shigeta Y; Hirabayashi R; Fukushima S; Otake Y; Hattori A; Suzuki N
    Stud Health Technol Inform; 2008; 132():183-8. PubMed ID: 18391283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 6-dof device to measure head movements in active vision experiments: geometric modeling and metric accuracy.
    Panerai F; Hanneton S; Droulez J; Cornilleau-Pérès V
    J Neurosci Methods; 1999 Aug; 90(2):97-106. PubMed ID: 10513593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Automatic opto-electronic control of patient position in radiotherapy for breast carcinoma].
    Baroni G; Orecchia R; Torretta F; Ferrigno G; Pedotti A
    Radiol Med; 1999; 98(1-2):78-84. PubMed ID: 10566300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder.
    Zhao Z
    Biomed Mater Eng; 2014; 24(6):2665-72. PubMed ID: 25226970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy.
    Allgower CE; Schreuder AN; Farr JB; Mascia AE
    Int J Med Robot; 2007 Mar; 3():72-81. PubMed ID: 17441029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MUPRO: a multipurpose robot.
    Bon L; Lucchetti C; Portolan F; Pagan M
    Int J Neurosci; 2002 Jul; 112(7):855-68. PubMed ID: 12424826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.