These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9083844)

  • 1. Flow in a simple model skeletal muscle ventricle: comparison between numerical and physical simulations.
    Henry FS; Shortland AP; Iudicello F; Black RA; Jarvis JC; Collins MW; Salmons S
    J Biomech Eng; 1997 Feb; 119(1):13-9. PubMed ID: 9083844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and travel of vortices in model ventricles: application to the design of skeletal muscle ventricles.
    Shortland AP; Black RA; Jarvis JC; Henry FS; Iudicello F; Collins MW; Salmons S
    J Biomech; 1996 Apr; 29(4):503-11. PubMed ID: 8964780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing vortex development in a model of a skeletal muscle ventricle.
    Shortland AP; Black RA; Jarvis JC; Salmons S
    Artif Organs; 1996 Sep; 20(9):1026-33. PubMed ID: 8864024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of flow within a left ventricle model fully assisted with continuous flow through the aortic valve.
    Yano T; Funayama M; Sudo S; Mitamura Y
    Artif Organs; 2012 Aug; 36(8):714-23. PubMed ID: 22882441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of turbulent models on left ventricle diastolic flow patterns simulation.
    Jahanzamin J; Fatouraee N; Nasiraei-Moghaddam A
    Comput Methods Biomech Biomed Engin; 2019 Nov; 22(15):1229-1238. PubMed ID: 31437018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.
    Doost SN; Zhong L; Su B; Morsi YS
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):492-507. PubMed ID: 27796137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.
    Xu L; Yang M; Ye L; Dong Z
    Technol Health Care; 2015; 23 Suppl 2():S443-51. PubMed ID: 26410511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging.
    Long Q; Merrifield R; Xu XY; Kilner P; Firmin DN; G-Z Y
    Proc Inst Mech Eng H; 2008 May; 222(4):475-85. PubMed ID: 18595359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of the occurrence of vortex rings in the left ventricle during diastole.
    Bot H; Verburg J; Delemarre BJ; Strackee J
    J Biomech; 1990; 23(6):607-15. PubMed ID: 2341422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-left ventricular flow dynamics in patients with preserved and impaired left ventricular function: Analysis with 3D cine phase contrast MRI (4D-Flow).
    Suwa K; Saitoh T; Takehara Y; Sano M; Saotome M; Urushida T; Katoh H; Satoh H; Sugiyama M; Wakayama T; Alley M; Sakahara H; Hayashi H
    J Magn Reson Imaging; 2016 Dec; 44(6):1493-1503. PubMed ID: 27185516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm--steady and unsteady flow cases.
    Taylor TW; Yamaguchi T
    J Biomech Eng; 1994 Feb; 116(1):89-97. PubMed ID: 8189719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of vortex formation on left ventricular filling and mitral valve efficiency.
    Pierrakos O; Vlachos PP
    J Biomech Eng; 2006 Aug; 128(4):527-39. PubMed ID: 16813444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation.
    Kheradvar A; Gharib M
    Ann Biomed Eng; 2007 Dec; 35(12):2050-64. PubMed ID: 17899379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics.
    Moosavi MH; Fatouraee N; Katoozian H; Pashaei A; Camara O; Frangi AF
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):740-9. PubMed ID: 22974145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptotic Model of Fluid-Tissue Interaction for Mitral Valve Dynamics.
    Domenichini F; Pedrizzetti G
    Cardiovasc Eng Technol; 2015 Jun; 6(2):95-104. PubMed ID: 26577230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex blood flow patterns in an idealized left ventricle: A numerical study.
    Tagliabue A; Dedè L; Quarteroni A
    Chaos; 2017 Sep; 27(9):093939. PubMed ID: 28964151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of blood flow in artificial and natural hearts with fluid-structure interaction.
    Doyle MG; Vergniaud JB; Tavoularis S; Bourgault Y
    Artif Organs; 2008 Nov; 32(11):870-9. PubMed ID: 18959680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of spatial inlet velocity profiles on the vortex formation pattern in a dilated left ventricle.
    Chan BT; Lim E; Ong CW; Abu Osman NA
    Comput Methods Biomech Biomed Engin; 2015; 18(1):90-6. PubMed ID: 23521137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.