BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9084042)

  • 1. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers.
    Goodyer ID; Hayes DJ; Eisenthal R
    Mol Biochem Parasitol; 1997 Feb; 84(2):229-39. PubMed ID: 9084042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport processes of 2-deoxy-D-glucose in erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite.
    Izumo A; Tanabe K; Kato M; Doi S; Maekawa K; Takada S
    Parasitology; 1989 Jun; 98 Pt 3():371-9. PubMed ID: 2771446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel.
    Kirk K; Horner HA; Elford BC; Ellory JC; Newbold CI
    J Biol Chem; 1994 Feb; 269(5):3339-47. PubMed ID: 8106373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP
    J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide is not a substrate of the facilitative hexose transporter GLUT1.
    Reyes AM; Bustamante F; Rivas CI; Ortega M; Donnet C; Rossi JP; Fischbarg J; Vera JC
    Biochemistry; 2002 Jun; 41(25):8075-81. PubMed ID: 12069599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP regulation of the human red cell sugar transporter.
    Carruthers A
    J Biol Chem; 1986 Aug; 261(24):11028-37. PubMed ID: 3733746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of kinetic data on the influx and efflux of chloroquine by erythrocytes infected with Plasmodium falciparum. Evidence for a drug-importer in chloroquine-sensitive strains.
    Ferrari V; Cutler DJ
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S167-79. PubMed ID: 1768274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process.
    Kirk K; Horner HA; Kirk J
    Mol Biochem Parasitol; 1996 Nov; 82(2):195-205. PubMed ID: 8946385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of inhibitors on glucose transport in malaria (Plasmodium berghei) infected erythrocytes.
    Tripatara A; Yuthavong Y
    Int J Parasitol; 1986 Oct; 16(5):441-6. PubMed ID: 3536772
    [No Abstract]   [Full Text] [Related]  

  • 12. Preferential targeting of human erythrocytes infected with the malaria parasite Plasmodium falciparumvia hexose transporter surface proteins.
    Heikham KD; Gupta A; Kumar A; Singh C; Saxena J; Srivastava K; Puri SK; Dwivedi AK; Habib S; Misra A
    Int J Pharm; 2015 Apr; 483(1-2):57-62. PubMed ID: 25666024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Elliott JL; Saliba KJ; Kirk K
    Biochem J; 2001 May; 355(Pt 3):733-9. PubMed ID: 11311136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter.
    Halmos T; Santarromana M; Antonakis K; Scherman D
    Eur J Pharmacol; 1996 Dec; 318(2-3):477-84. PubMed ID: 9016941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.
    Pérez A; Ojeda P; Valenzuela X; Ortega M; Sánchez C; Ojeda L; Castro M; Cárcamo JG; Rauch MC; Concha II; Rivas CI; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C86-93. PubMed ID: 19386788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha- and beta-monosaccharide transport in human erythrocytes.
    Leitch JM; Carruthers A
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C151-61. PubMed ID: 18987250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei.
    Staines HM; Kirk K
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):525-30. PubMed ID: 9729457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.