BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9084042)

  • 21. Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites.
    Barrand MA; Winterberg M; Ng F; Nguyen M; Kirk K; Hladky SB
    Biochem J; 2012 Dec; 448(3):389-400. PubMed ID: 22950671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake of L-tryptophan by erythrocytes infected with malaria parasites (Plasmodium falciparum).
    Ginsburg H; Krugliak M
    Biochim Biophys Acta; 1983 Mar; 729(1):97-103. PubMed ID: 6338923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel anion dependence of induced cation transport in malaria-infected erythrocytes.
    Kirk K; Horner HA
    J Biol Chem; 1995 Oct; 270(41):24270-5. PubMed ID: 7592635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythrocyte lysis and Xenopus laevis oocyte rupture by recombinant Plasmodium falciparum hemolysin III.
    Moonah S; Sanders NG; Persichetti JK; Sullivan DJ
    Eukaryot Cell; 2014 Oct; 13(10):1337-45. PubMed ID: 25148832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum.
    Atamna H; Ginsburg H
    Mol Biochem Parasitol; 1993 Oct; 61(2):231-41. PubMed ID: 8264727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of glucose transport in Helicobacter pylori.
    Mendz GL; Burns BP; Hazell SL
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):269-76. PubMed ID: 7599143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decreased level of 2,3-diphosphoglycerate and alteration of structural integrity in erythrocytes infected with Plasmodium falciparum in vitro.
    Dubey ML; Hegde R; Ganguly NK; Mahajan RC
    Mol Cell Biochem; 2003 Apr; 246(1-2):137-41. PubMed ID: 12841355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of a delta-COP homologue in the malaria parasite, Plasmodium falciparum.
    Adisa A; Rug M; Foley M; Tilley L
    Mol Biochem Parasitol; 2002 Aug; 123(1):11-21. PubMed ID: 12165385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites.
    Atamna H; Pascarmona G; Ginsburg H
    Mol Biochem Parasitol; 1994 Sep; 67(1):79-89. PubMed ID: 7838186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of macromolecular transport pathways in malaria-infected erythrocytes.
    Goodyer ID; Pouvelle B; Schneider TG; Trelka DP; Taraschi TF
    Mol Biochem Parasitol; 1997 Jul; 87(1):13-28. PubMed ID: 9233670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification.
    van Niekerk DD; du Toit F; Green K; Palm D; Snoep JL
    J Biol Chem; 2023 Sep; 299(9):105111. PubMed ID: 37517694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes.
    Milani KJ; Schneider TG; Taraschi TF
    Eukaryot Cell; 2015 Apr; 14(4):415-26. PubMed ID: 25724884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose transport inhibitors protect against 1,2-cyclohexanedione-produced potassium loss from human red blood cells.
    Baker GF; O'Gorman R; Baker P
    Exp Physiol; 1998 Mar; 83(2):239-42. PubMed ID: 9568484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GLUT1 transmembrane glucose pathway. Affinity labeling with a transportable D-glucose diazirine.
    Lachaal M; Rampal AL; Lee W; Shi Y; Jung CY
    J Biol Chem; 1996 Mar; 271(9):5225-30. PubMed ID: 8617806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.