BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9084042)

  • 41. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes.
    Haldar K; Uyetake L
    Mol Biochem Parasitol; 1992 Jan; 50(1):161-77. PubMed ID: 1371847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anion transport inhibitors as suppressors of Plasmodium falciparum growth in in vitro cultures.
    Cabantchik ZI; Kutner S; Krugliak M; Ginsburg H
    Mol Pharmacol; 1983 Jan; 23(1):92-9. PubMed ID: 6346050
    [No Abstract]   [Full Text] [Related]  

  • 43. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells.
    Craik JD; Young JD; Cheeseman CI
    Am J Physiol; 1998 Jan; 274(1):R112-9. PubMed ID: 9458906
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of diamide on nucleoside and glucose transport in Plasmodium falciparum and Babesia bovis infected erythrocytes.
    Gero AM; Wood AM; Hogue DL; Upston JM
    Mol Biochem Parasitol; 1991 Feb; 44(2):195-206. PubMed ID: 2052021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monensin stimulates sugar transport in avian erythrocytes.
    Bihler I; Charles P; Sawh PC
    Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rosetting of Plasmodium falciparum required multiple components of the uninfected erythrocytes.
    Pipitaporn B; Sueblinvong T; Dharmkrong-at A; Udomsangpetch R
    Asian Pac J Allergy Immunol; 2000 Mar; 18(1):29-35. PubMed ID: 12546055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A biotin derivative blocks parasite induced novel permeation pathways in Plasmodium falciparum-infected erythrocytes.
    Baumeister S; Endermann T; Charpian S; Nyalwidhe J; Duranton C; Huber S; Kirk K; Lang F; Lingelbach K
    Mol Biochem Parasitol; 2003 Nov; 132(1):35-45. PubMed ID: 14563535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid GLUT-1 mediated glucose transport in erythrocytes from the grey-headed fruit bat (Pteropus poliocephalus).
    Craik JD; Markovich D
    Comp Biochem Physiol A Mol Integr Physiol; 2000 May; 126(1):45-55. PubMed ID: 10908851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter.
    Kasahara T; Kasahara M
    Biochim Biophys Acta; 1997 Feb; 1324(1):111-9. PubMed ID: 9059504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inducible transport systems in the regulation of parasite growth in malaria-infected red blood cells.
    Elford BC; Pinches RA
    Biochem Soc Trans; 1992 Nov; 20(4):790-6. PubMed ID: 1487065
    [No Abstract]   [Full Text] [Related]  

  • 52. Band 3 clustering promotes the exposure of neoantigens in Plasmodium falciparum-infected erythrocytes.
    Winograd E; Prudhomme JG; Sherman IW
    Mol Biochem Parasitol; 2005 Jul; 142(1):98-105. PubMed ID: 15907563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum.
    Martin RE; Kirk K
    Blood; 2007 Mar; 109(5):2217-24. PubMed ID: 17047158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on O-glycans of Plasmodium-falciparum-infected human erythrocytes. Evidence for O-GlcNAc and O-GlcNAc-transferase in malaria parasites.
    Dieckmann-Schuppert A; Bause E; Schwarz RT
    Eur J Biochem; 1993 Sep; 216(3):779-88. PubMed ID: 8404896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glucose transport in primary cultured neurons.
    Heidenrich KA; Gilmore PR; Garvey WT
    J Neurosci Res; 1989 Apr; 22(4):397-407. PubMed ID: 2760941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asymmetric transport of a fluorescent glucose analogue by human erythrocytes.
    Speizer L; Haugland R; Kutchai H
    Biochim Biophys Acta; 1985 Apr; 815(1):75-84. PubMed ID: 4039191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glucose transport in amastigotes and promastigotes of Leishmania mexicana mexicana.
    Burchmore RJ; Hart DT
    Mol Biochem Parasitol; 1995 Oct; 74(1):77-86. PubMed ID: 8719247
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The increased K+ leak of malaria-infected erythrocytes is not via a Ca(2+)-activated K+ channel.
    Kirk K; Elford BC; Ellory JC
    Biochim Biophys Acta; 1992 Apr; 1135(1):8-12. PubMed ID: 1375512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmodium falciparum and blood monocyte induced abnormalities in human erythrocyte cation homeostasis.
    Mohan K; Dubey ML; Ganguly NK; Mahajan RC
    Immunol Cell Biol; 1994 Aug; 72(4):286-91. PubMed ID: 7806261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.