These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 9084360)
1. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism. Buckley JG; Spence WD; Solomonidis SE Arch Phys Med Rehabil; 1997 Mar; 78(3):330-3. PubMed ID: 9084360 [TBL] [Abstract][Full Text] [Related]
2. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs. Taylor MB; Clark E; Offord EA; Baxter C Prosthet Orthot Int; 1996 Aug; 20(2):116-21. PubMed ID: 8876005 [TBL] [Abstract][Full Text] [Related]
3. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control. Datta D; Heller B; Howitt J Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508 [TBL] [Abstract][Full Text] [Related]
4. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Chin T; Machida K; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Nakagawa A Prosthet Orthot Int; 2006 Apr; 30(1):73-80. PubMed ID: 16739783 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related]
6. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with able-bodied people. Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Machida K; Nakagawa A Am J Phys Med Rehabil; 2003 Jun; 82(6):447-51. PubMed ID: 12820787 [TBL] [Abstract][Full Text] [Related]
7. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee. Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251 [TBL] [Abstract][Full Text] [Related]
9. The CAT-CAM socket and quadrilateral socket: a comparison of energy cost during ambulation. Gailey RS; Lawrence D; Burditt C; Spyropoulos P; Newell C; Nash MS Prosthet Orthot Int; 1993 Aug; 17(2):95-100. PubMed ID: 8233775 [TBL] [Abstract][Full Text] [Related]
10. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study. Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012 [TBL] [Abstract][Full Text] [Related]
11. The efficacy of physiological cost index (PCI) measurement of a subject walking with an Intelligent Prosthesis. Chin T; Sawamura S; Fujita H; Nakajima S; Ojima I; Oyabu H; Nagakura Y; Otsuka H; Nakagawa A Prosthet Orthot Int; 1999 Apr; 23(1):45-9. PubMed ID: 10355642 [TBL] [Abstract][Full Text] [Related]
12. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study. Mengelkoch LJ; Kahle JT; Highsmith MJ Prosthet Orthot Int; 2017 Oct; 41(5):484-491. PubMed ID: 27885098 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
14. Energy cost of walking in transfemoral amputees: Comparison between Marlo Anatomical Socket and Ischial Containment Socket. Traballesi M; Delussu AS; Averna T; Pellegrini R; Paradisi F; Brunelli S Gait Posture; 2011 Jun; 34(2):270-4. PubMed ID: 21684165 [TBL] [Abstract][Full Text] [Related]
15. Maximum Swing Flexion or Gait Symmetry: A Comparative Evaluation of Control Targets on Metabolic Energy Expenditure of Amputee Using Intelligent Prosthetic Knee. Cao W; Zhao W; Yu H; Chen W; Meng Q Biomed Res Int; 2018; 2018():2898546. PubMed ID: 30584532 [TBL] [Abstract][Full Text] [Related]
16. Oxygen consumption during ambulation: comparison of using a prosthesis fitted with and without a tele-torsion device. Buckley JG; Jones SF; Birch KM Arch Phys Med Rehabil; 2002 Apr; 83(4):576-80. PubMed ID: 11932866 [TBL] [Abstract][Full Text] [Related]
17. Sprint kinematics of athletes with lower-limb amputations. Buckley JG Arch Phys Med Rehabil; 1999 May; 80(5):501-8. PubMed ID: 10326911 [TBL] [Abstract][Full Text] [Related]
18. The effects of prosthesis mass on metabolic cost of ambulation in non-vascular trans-tibial amputees. Gailey RS; Nash MS; Atchley TA; Zilmer RM; Moline-Little GR; Morris-Cresswell N; Siebert LI Prosthet Orthot Int; 1997 Apr; 21(1):9-16. PubMed ID: 9141121 [TBL] [Abstract][Full Text] [Related]
19. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control. Boonstra AM; Schrama J; Fidler V; Eisma WH Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824 [TBL] [Abstract][Full Text] [Related]
20. A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees. Heller BW; Datta D; Howitt J Clin Rehabil; 2000 Oct; 14(5):518-22. PubMed ID: 11043877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]