These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 9084360)
21. Energy cost of walking of below-knee amputees having no vascular disease. Pagliarulo MA; Waters R; Hislop HJ Phys Ther; 1979 May; 59(5):538-43. PubMed ID: 441113 [TBL] [Abstract][Full Text] [Related]
22. Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses. Perry J; Burnfield JM; Newsam CJ; Conley P Arch Phys Med Rehabil; 2004 Oct; 85(10):1711-7. PubMed ID: 15468036 [TBL] [Abstract][Full Text] [Related]
23. Physiological comparison of walking among bilateral above-knee amputee and able-bodied subjects, and a model to account for the differences in metabolic cost. Hoffman MD; Sheldahl LM; Buley KJ; Sandford PR Arch Phys Med Rehabil; 1997 Apr; 78(4):385-92. PubMed ID: 9111458 [TBL] [Abstract][Full Text] [Related]
24. Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds. Gjovaag T; Mirtaheri P; Starholm IM Prosthet Orthot Int; 2018 Jun; 42(3):304-310. PubMed ID: 29119861 [TBL] [Abstract][Full Text] [Related]
25. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
26. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Gailey RS; Wenger MA; Raya M; Kirk N; Erbs K; Spyropoulos P; Nash MS Prosthet Orthot Int; 1994 Aug; 18(2):84-91. PubMed ID: 7991365 [TBL] [Abstract][Full Text] [Related]
27. Energy costs & performance of transtibial amputees & non-amputees during walking & running. Mengelkoch LJ; Kahle JT; Highsmith MJ Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429 [TBL] [Abstract][Full Text] [Related]
28. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
30. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. Martinez-Villalpando EC; Mooney L; Elliott G; Herr H Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8519-22. PubMed ID: 22256326 [TBL] [Abstract][Full Text] [Related]
31. Comparison of energy cost in transtibial amputees using "prosthesis" and "crutches without prosthesis" for walking activities. Mohanty RK; Lenka P; Equebal A; Kumar R Ann Phys Rehabil Med; 2012 May; 55(4):252-62. PubMed ID: 22534430 [TBL] [Abstract][Full Text] [Related]
32. Mobility function of a prosthetic knee joint with an automatic stance phase lock. Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198 [TBL] [Abstract][Full Text] [Related]
33. Effect of alterations in prosthetic shank mass on the metabolic costs of ambulation in above-knee amputees. Czerniecki JM; Gitter A; Weaver K Am J Phys Med Rehabil; 1994; 73(5):348-52. PubMed ID: 7917165 [TBL] [Abstract][Full Text] [Related]
34. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms. Struchkov V; Buckley JG Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894 [TBL] [Abstract][Full Text] [Related]
35. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis. Ingraham KA; Fey NP; Simon AM; Hargrove LJ PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889 [TBL] [Abstract][Full Text] [Related]
36. Energy expenditure of below-knee amputees during harness-supported treadmill ambulation. Hunter D; Smith Cole E; Murray JM; Murray TD J Orthop Sports Phys Ther; 1995 May; 21(5):268-76. PubMed ID: 7787850 [TBL] [Abstract][Full Text] [Related]
37. The energy cost for the step-to-step transition in amputee walking. Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343 [TBL] [Abstract][Full Text] [Related]
38. Effects of Handrail and Cane Support on Energy Cost of Walking in People With Different Levels and Causes of Lower Limb Amputation. Houdijk H; Blokland IJ; Nazier SA; Castenmiller SV; van den Heuvel I; IJmker T Arch Phys Med Rehabil; 2021 Jul; 102(7):1340-1346.e3. PubMed ID: 33684364 [TBL] [Abstract][Full Text] [Related]
39. Energy consumption during prosthetic walking and physical fitness in older hip disarticulation amputees. Chin T; Kuroda R; Akisue T; Iguchi T; Kurosaka M J Rehabil Res Dev; 2012; 49(8):1255-60. PubMed ID: 23341317 [TBL] [Abstract][Full Text] [Related]
40. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees. De Asha AR; Munjal R; Kulkarni J; Buckley JG Clin Biomech (Bristol); 2014 Aug; 29(7):728-34. PubMed ID: 24997811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]