These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 9084498)
1. Formation of leukotoxin (9,10-epoxy-12-octadecenoic acid) during the autoxidation of phospholipids promoted by hemoproteins. Iwase H; Takatori T; Niijima H; Nagao M; Amano T; Iwadate K; Matsuda Y; Nakajima M; Kobayashi M Biochim Biophys Acta; 1997 Mar; 1345(1):27-34. PubMed ID: 9084498 [TBL] [Abstract][Full Text] [Related]
2. Monoepoxide production from linoleic acid by cytochrome c in the presence of cardiolipin. Iwase H; Takatori T; Nagao M; Iwadate K; Nakajima M Biochem Biophys Res Commun; 1996 May; 222(1):83-9. PubMed ID: 8630079 [TBL] [Abstract][Full Text] [Related]
3. Thiol-oxidizing agent diamide and acidic pH enhance lipid peroxidation of rat heart mitochondria and cardiolipin-cytochrome c complex. Iwase H; Sakurada K; Ikegaya H; Hatanaka K; Takeichi H; Kobayashi M; Yoshida K IUBMB Life; 2001 Jan; 51(1):39-43. PubMed ID: 11419694 [TBL] [Abstract][Full Text] [Related]
4. Lipid peroxidation in linoleic acid micelles caused by H2O2 in the presence of myoglobin. Nakayama T; Chiba Y; Hashimoto K Biosci Biotechnol Biochem; 1997 May; 61(5):817-20. PubMed ID: 9178558 [TBL] [Abstract][Full Text] [Related]
5. Effect of cytochrome c on the linoleic acid-degrading activity of porcine leukocyte 12-lipoxygenase. Iwase H; Sakurada K; Hatanaka K; Kobayashi M; Takatori T Free Radic Biol Med; 2000 Mar; 28(6):912-9. PubMed ID: 10802222 [TBL] [Abstract][Full Text] [Related]
6. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis. Zhong H; Lu J; Xia L; Zhu M; Yin H Redox Biol; 2014; 2():878-83. PubMed ID: 25061570 [TBL] [Abstract][Full Text] [Related]
7. Degradation of phospholipids by oxidative stress--exceptional significance of cardiolipin. Wiswedel I; Gardemann A; Storch A; Peter D; Schild L Free Radic Res; 2010 Feb; 44(2):135-45. PubMed ID: 20092032 [TBL] [Abstract][Full Text] [Related]
8. Peroxide-dependent and -independent lipid peroxidations catalyzed by chelated iron. Fukuzawa K; Fujii T; Mukai K Arch Biochem Biophys; 1991 Nov; 290(2):489-96. PubMed ID: 1656881 [TBL] [Abstract][Full Text] [Related]
9. The Cytotoxic Action of Cytochrome C/Cardiolipin Nanocomplex (Cyt-CL) on Cancer Cells in Culture. Vladimirov YA; Sarisozen C; Vladimirov GK; Filipczak N; Polimova AM; Torchilin VP Pharm Res; 2017 Jun; 34(6):1264-1275. PubMed ID: 28321609 [TBL] [Abstract][Full Text] [Related]
10. Peroxide dependent and independent lipid peroxidation: site-specific mechanisms of initiation by chelated iron and inhibition by alpha-tocopherol. Fukuzawa K; Fujii T Lipids; 1992 Mar; 27(3):227-33. PubMed ID: 1326073 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Nomura K; Imai H; Koumura T; Kobayashi T; Nakagawa Y Biochem J; 2000 Oct; 351(Pt 1):183-93. PubMed ID: 10998361 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen. Miyamoto S; Nantes IL; Faria PA; Cunha D; Ronsein GE; Medeiros MH; Di Mascio P Photochem Photobiol Sci; 2012 Oct; 11(10):1536-46. PubMed ID: 22814443 [TBL] [Abstract][Full Text] [Related]
13. Regio- and stereo-chemical oxidation of linoleic acid by human myoglobin and hydrogen peroxide: Tyr(103) affects rate and product distribution. Rayner BS; Stocker R; Lay PA; Witting PK Biochem J; 2004 Jul; 381(Pt 2):365-72. PubMed ID: 15035657 [TBL] [Abstract][Full Text] [Related]
14. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Shidoji Y; Hayashi K; Komura S; Ohishi N; Yagi K Biochem Biophys Res Commun; 1999 Oct; 264(2):343-7. PubMed ID: 10529366 [TBL] [Abstract][Full Text] [Related]
15. 3-O-alkylascorbic acids as free radical quenchers. II. Inhibitory effects on some lipid peroxidation models. Nihro Y; Sogawa S; Sudo T; Miki T; Matsumoto H; Satoh T Chem Pharm Bull (Tokyo); 1991 Jul; 39(7):1731-5. PubMed ID: 1777926 [TBL] [Abstract][Full Text] [Related]
16. A novel approach to study linoleic acid autoxidation: importance of simultaneous detection of the substrate and its derivative oxidation products. Banni S; Contini MS; Angioni E; Deiana M; Dessì MA; Melis MP; Carta G; Corongiu FP Free Radic Res; 1996 Jul; 25(1):43-53. PubMed ID: 8814443 [TBL] [Abstract][Full Text] [Related]
17. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Yin H; Zhu M Free Radic Res; 2012 Aug; 46(8):959-74. PubMed ID: 22468920 [TBL] [Abstract][Full Text] [Related]
18. Promotion of oxidative damage to arachidonic acid and alpha 1-antiproteinase by anti-inflammatory drugs in the presence of the haem proteins myoglobin and cytochrome C. Evans PJ; Akanmu D; Halliwell B Biochem Pharmacol; 1994 Dec; 48(12):2173-9. PubMed ID: 7811298 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the free radical-scavenging ability of captopril and ascorbic acid in an in-vitro model of lipid oxidation. Implications for reperfusion injury and ACE inhibitor therapy. Kaufman MJ J Pharm Pharmacol; 1994 Mar; 46(3):217-20. PubMed ID: 8027931 [TBL] [Abstract][Full Text] [Related]
20. Interaction between non-anionic phospholipids and cytochrome c induced by reactive oxygen species. Sidahmed-Adrar N; Marchetti C; Bonnefont-Rousselot D; Thariat J; Onidas D; Jore D; Gardes-Albert M; Collin F Chem Phys Lipids; 2010 Jun; 163(6):538-44. PubMed ID: 20398641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]