BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 9084611)

  • 1. Central modifications of reflex parameters may underlie the fastest arm movements.
    Adamovich SV; Levin MF; Feldman AG
    J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threshold control of motor actions prevents destabilizing effects of proprioceptive delays.
    Pilon JF; Feldman AG
    Exp Brain Res; 2006 Sep; 174(2):229-39. PubMed ID: 16676171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instruction-dependent modulation of the long-latency stretch reflex is associated with indicators of startle.
    Ravichandran VJ; Honeycutt CF; Shemmell J; Perreault EJ
    Exp Brain Res; 2013 Sep; 230(1):59-69. PubMed ID: 23811739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch reflex responses in the human elbow joint during a voluntary movement.
    Bennett DJ
    J Physiol; 1994 Jan; 474(2):339-51. PubMed ID: 8006819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexes.
    Shapiro MB; Gottlieb GL; Moore CG; Corcos DM
    J Neurophysiol; 2002 Aug; 88(2):1059-63. PubMed ID: 12163554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of autogenic and heterogenic stretch reflexes on pre-load activity in the human arm.
    Smeets JB; Erkelens CJ
    J Physiol; 1991; 440():455-65. PubMed ID: 1804972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient reversal of the stretch reflex in human arm muscles.
    Lacquaniti F; Borghese NA; Carrozzo M
    J Neurophysiol; 1991 Sep; 66(3):939-54. PubMed ID: 1753296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling of stretch reflex and background muscle activity during anticipatory postural adjustments in humans.
    Vedula S; Kearney RE; Wagner R; Stapley PJ
    Exp Brain Res; 2010 Aug; 205(2):205-13. PubMed ID: 20625702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of stretch reflexes during imposed walking movements of the human ankle.
    Kearney RE; Lortie M; Stein RB
    J Neurophysiol; 1999 Jun; 81(6):2893-902. PubMed ID: 10368406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes.
    Carpenter MG; Allum JH; Honegger F
    Exp Brain Res; 1999 Nov; 129(1):93-113. PubMed ID: 10550507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.