BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9084632)

  • 1. Mineral characterization in calcifying tissues: atomic, molecular and macromolecular perspectives.
    Landis WJ
    Connect Tissue Res; 1996; 34(4):239-46. PubMed ID: 9084632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices.
    Veis A; Dorvee JR
    Calcif Tissue Int; 2013 Oct; 93(4):307-15. PubMed ID: 23241924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution with review to the description of mineralization of bone and other calcified tissues in vivo.
    Christoffersen J; Landis WJ
    Anat Rec; 1991 Aug; 230(4):435-50. PubMed ID: 1928750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: An FTIR imaging study.
    Garimella R; Bi X; Anderson HC; Camacho NP
    Bone; 2006 Jun; 38(6):811-7. PubMed ID: 16461032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of mineral structure in normally calcifying avian tendon.
    Siperko LM; Landis WJ
    J Struct Biol; 2001 Sep; 135(3):313-20. PubMed ID: 11722171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of vertebrate mineralization with emphasis on collagen-mineral interaction.
    Landis WJ
    Gravit Space Biol Bull; 1999 May; 12(2):15-26. PubMed ID: 11541779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development.
    Chen L; Jacquet R; Lowder E; Landis WJ
    Bone; 2015 Feb; 71():7-16. PubMed ID: 25284158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic calcium phosphates: models for biological crystals?
    Péru L; Daculsi G
    Clin Mater; 1994; 15(4):267-72. PubMed ID: 10147170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of two new composites: collagen-brushite and collagen octa-calcium phosphate.
    Jayaraman M; Subramanian MV
    Med Sci Monit; 2002 Nov; 8(11):BR481-7. PubMed ID: 12444373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current concepts of the physiology and biochemistry of calcification.
    Boskey AL
    Clin Orthop Relat Res; 1981 Jun; (157):225-57. PubMed ID: 7018782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues.
    Landis WJ; Jacquet R
    Calcif Tissue Int; 2013 Oct; 93(4):329-37. PubMed ID: 23543143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcification mechanisms: roles for cells and mineral.
    Becker GL
    J Oral Pathol; 1977 Sep; 6(5):307-15. PubMed ID: 409823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the biophysical regulation of mineral growth: Standing out from the crowd.
    Rao A; Cölfen H
    J Struct Biol; 2016 Nov; 196(2):232-243. PubMed ID: 27036233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
    Silver FH; Landis WJ
    Connect Tissue Res; 2011 Jun; 52(3):242-54. PubMed ID: 21405976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro models of collagen biomineralization.
    Nudelman F; Lausch AJ; Sommerdijk NA; Sone ED
    J Struct Biol; 2013 Aug; 183(2):258-69. PubMed ID: 23597833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix.
    Bjørnøy SH; Bassett DC; Ucar S; Strand BL; Andreassen JP; Sikorski P
    Acta Biomater; 2016 Oct; 44():254-66. PubMed ID: 27567962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.