These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 9084634)
1. Intracrystalline macromolecules are involved in the morphogenesis of calcitic sponge spicules. Aizenberg J; Ilan M; Weiner S; Addadi L Connect Tissue Res; 1996; 34(4):255-61. PubMed ID: 9084634 [TBL] [Abstract][Full Text] [Related]
2. Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals. Aizenberg J; Hanson J; Ilan M; Leiserowitz L; Koetzle TF; Addadi L; Weiner S FASEB J; 1995 Feb; 9(2):262-8. PubMed ID: 7781928 [TBL] [Abstract][Full Text] [Related]
3. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Sethmann I; Wörheide G Micron; 2008; 39(3):209-28. PubMed ID: 17360189 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system. Müller WE; Schlossmacher U; Schröder HC; Lieberwirth I; Glasser G; Korzhev M; Neufurth M; Wang X Acta Biomater; 2014 Jan; 10(1):450-62. PubMed ID: 23978410 [TBL] [Abstract][Full Text] [Related]
5. Nano-cluster composite structure of calcitic sponge spicules--a case study of basic characteristics of biominerals. Sethmann I; Hinrichs R; Wörheide G; Putnis A J Inorg Biochem; 2006 Jan; 100(1):88-96. PubMed ID: 16321444 [TBL] [Abstract][Full Text] [Related]
6. Long-range crystalline order in spicules from the calcareous sponge Paraleucilla magna (Porifera, Calcarea). Rossi AL; Campos AP; Barroso MM; Klautau M; Archanjo BS; Borojevic R; Farina M; Werckmann J Acta Biomater; 2014 Sep; 10(9):3875-84. PubMed ID: 24487057 [TBL] [Abstract][Full Text] [Related]
7. Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Aizenberg J; Weiner S; Addadi L Connect Tissue Res; 2003; 44 Suppl 1():20-5. PubMed ID: 12952169 [TBL] [Abstract][Full Text] [Related]
8. Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. Fleming DE; Van Riessen A; Chauvet MC; Grover PK; Hunter B; van Bronswijk W; Ryall RL J Bone Miner Res; 2003 Jul; 18(7):1282-91. PubMed ID: 12854839 [TBL] [Abstract][Full Text] [Related]
9. Flexible minerals: self-assembled calcite spicules with extreme bending strength. Natalio F; Corrales TP; Panthöfer M; Schollmeyer D; Lieberwirth I; Müller WE; Kappl M; Butt HJ; Tremel W Science; 2013 Mar; 339(6125):1298-302. PubMed ID: 23493708 [TBL] [Abstract][Full Text] [Related]
10. Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. Pokroy B; Fitch AN; Marin F; Kapon M; Adir N; Zolotoyabko E J Struct Biol; 2006 Jul; 155(1):96-103. PubMed ID: 16682231 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic orientation and concentric layers in spicules of calcareous sponges. Rossi AL; Ribeiro B; Lemos M; Werckmann J; Borojevic R; Fromont J; Klautau M; Farina M J Struct Biol; 2016 Nov; 196(2):164-172. PubMed ID: 27090155 [TBL] [Abstract][Full Text] [Related]
12. Mesostructure from hydration gradients in demosponge biosilica. Neilson JR; George NC; Murr MM; Seshadri R; Morse DE Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700 [TBL] [Abstract][Full Text] [Related]
13. Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. Aizenberg J; Lambert G; Weiner S; Addadi L J Am Chem Soc; 2002 Jan; 124(1):32-9. PubMed ID: 11772059 [TBL] [Abstract][Full Text] [Related]
14. Comments on a skeleton design paradigm for a demosponge. Aluma Y; Ilan M; Sherman D J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685 [TBL] [Abstract][Full Text] [Related]
15. Lattice distortions in coccolith calcite crystals originate from occlusion of biomacromolecules. Hood MA; Leemreize H; Scheffel A; Faivre D J Struct Biol; 2016 Nov; 196(2):147-154. PubMed ID: 27645701 [TBL] [Abstract][Full Text] [Related]
16. Calcareous sponge biomineralization: ultrastructural and compositional heterogeneity of spicules in Leuconia johnstoni. Kopp C; Meibom A; Beyssac O; Stolarski J; Djediat S; Szlachetko J; Domart-Coulon I J Struct Biol; 2011 Jan; 173(1):99-109. PubMed ID: 20656035 [TBL] [Abstract][Full Text] [Related]
17. Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes. Voigt O; Adamski M; Sluzek K; Adamska M BMC Evol Biol; 2014 Nov; 14():230. PubMed ID: 25421146 [TBL] [Abstract][Full Text] [Related]
18. Protein-induced, previously unidentified twin form of calcite. Pokroy B; Kapon M; Marin F; Adir N; Zolotoyabko E Proc Natl Acad Sci U S A; 2007 May; 104(18):7337-41. PubMed ID: 17460048 [TBL] [Abstract][Full Text] [Related]
19. Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Albeck S; Addadi I; Weiner S Connect Tissue Res; 1996; 35(1-4):365-70. PubMed ID: 9084676 [TBL] [Abstract][Full Text] [Related]
20. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Mohri K; Nakatsukasa M; Masuda Y; Agata K; Funayama N Dev Dyn; 2008 Oct; 237(10):3024-39. PubMed ID: 18816843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]