These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9084831)

  • 1. Observations of convergence and uniqueness of node-based bone remodeling simulations.
    Fischer KJ; Jacobs CR; Levenston ME; Carter DR
    Ann Biomed Eng; 1997; 25(2):261-8. PubMed ID: 9084831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different loads can produce similar bone density distributions.
    Fischer KJ; Jacobs CR; Levenston ME; Carter DR
    Bone; 1996 Aug; 19(2):127-35. PubMed ID: 8853856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric investigation of load-induced structure remodeling in the proximal femur.
    Marzban A; Canavan P; Warner G; Vaziri A; Nayeb-Hashemi H
    Proc Inst Mech Eng H; 2012 Jun; 226(6):450-60. PubMed ID: 22783761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach.
    Jacobs CR; Levenston ME; Beaupré GS; Simo JC; Carter DR
    J Biomech; 1995 Apr; 28(4):449-59. PubMed ID: 7738054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Use of Bone Remodelling Models to Estimate the Density Distribution of Bones. Uniqueness of the Solution.
    Martínez-Reina J; Ojeda J; Mayo J
    PLoS One; 2016; 11(2):e0148603. PubMed ID: 26859888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of initial density distribution in simulations of bone remodeling around dental implants.
    Nuţu E
    Acta Bioeng Biomech; 2018; 20(4):23-31. PubMed ID: 30821277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems.
    Van Rietbergen B; Huiskes R; Weinans H; Sumner DR; Turner TM; Galante JO
    J Biomech; 1993; 26(4-5):369-82. PubMed ID: 8478342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The behavior of adaptive bone-remodeling simulation models.
    Weinans H; Huiskes R; Grootenboer HJ
    J Biomech; 1992 Dec; 25(12):1425-41. PubMed ID: 1491020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study.
    Xu W; Robinson K
    Ann Biomed Eng; 2008 Mar; 36(3):435-43. PubMed ID: 18197477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulations of stress-related bone remodeling around noncemented acetabular components.
    Levenston ME; Beaupré GS; Schurman DJ; Carter DR
    J Arthroplasty; 1993 Dec; 8(6):595-605. PubMed ID: 8301277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical estimation of bone density and elastic constants distribution in a human mandible.
    Reina JM; García-Aznar JM; Domínguez J; Doblaré M
    J Biomech; 2007; 40(4):828-36. PubMed ID: 16687149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Simulation of Mandible Bone Remodeling under Tooth Loading: A Parametric Study.
    Su K; Yuan L; Yang J; Du J
    Sci Rep; 2019 Oct; 9(1):14887. PubMed ID: 31624317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simulation of the rat tibial bone density changes with the finite element method].
    An MY; Ma AJ; Li YH; Wan YM
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):55-7. PubMed ID: 15852552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of subchondral bone adaptation to mechanical loading in an incongruous joint.
    Jacobs CR; Eckstein F
    Anat Rec; 1997 Nov; 249(3):317-26. PubMed ID: 9372165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the viscoelastic effect in a bone remodeling model.
    Baïotto S; Zidi M
    Biomech Model Mechanobiol; 2009 Apr; 8(2):129-39. PubMed ID: 18357479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.