BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

925 related articles for article (PubMed ID: 9084960)

  • 1. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions.
    Bertz RJ; Granneman GR
    Clin Pharmacokinet; 1997 Mar; 32(3):210-58. PubMed ID: 9084960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition and induction of cytochrome P450 and the clinical implications.
    Lin JH; Lu AY
    Clin Pharmacokinet; 1998 Nov; 35(5):361-90. PubMed ID: 9839089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children : how accurate are available scaling methods?
    Björkman S
    Clin Pharmacokinet; 2006; 45(1):1-11. PubMed ID: 16430308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of in vitro drug metabolism data to evaluate metabolic drug-drug interactions in man: the need for quantitative databases.
    Rodrigues AD; Winchell GA; Dobrinska MR
    J Clin Pharmacol; 2001 Apr; 41(4):368-73. PubMed ID: 11304892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic and Static Simulations of Fluvoxamine-Perpetrated Drug-Drug Interactions Using Multiple Cytochrome P450 Inhibition Modeling, and Determination of Perpetrator-Specific CYP Isoform Inhibition Constants and Fractional CYP Isoform Contributions to Victim Clearance.
    Iga K
    J Pharm Sci; 2016 Mar; 105(3):1307-17. PubMed ID: 26886336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro metabolism of carbofuran by human, mouse, and rat cytochrome P450 and interactions with chlorpyrifos, testosterone, and estradiol.
    Usmani KA; Hodgson E; Rose RL
    Chem Biol Interact; 2004 Dec; 150(3):221-32. PubMed ID: 15560889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450-mediated metabolism in the human gut wall.
    Thelen K; Dressman JB
    J Pharm Pharmacol; 2009 May; 61(5):541-58. PubMed ID: 19405992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ximelagatran, an oral direct thrombin inhibitor, has a low potential for cytochrome P450-mediated drug-drug interactions.
    Bredberg E; Andersson TB; Frison L; Thuresson A; Johansson S; Eriksson-Lepkowska M; Larsson M; Eriksson UG
    Clin Pharmacokinet; 2003; 42(8):765-77. PubMed ID: 12846597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic drug interactions between clobazam and drugs metabolized by cytochrome P450 isoenzymes.
    Walzer M; Bekersky I; Blum RA; Tolbert D
    Pharmacotherapy; 2012 Apr; 32(4):340-53. PubMed ID: 22422635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential role of cerebral cytochrome P450 in clinical pharmacokinetics: modulation by endogenous compounds.
    Gervasini G; Carrillo JA; Benitez J
    Clin Pharmacokinet; 2004; 43(11):693-706. PubMed ID: 15301574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic interactions of magnolol with cytochrome P450 enzymes: uncompetitive inhibition of CYP1A and competitive inhibition of CYP2C.
    Kim SB; Kang HE; Cho HJ; Kim YS; Chung SJ; Yoon IS; Kim DD
    Drug Dev Ind Pharm; 2016; 42(2):263-9. PubMed ID: 26133083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information.
    Hisaka A; Ohno Y; Yamamoto T; Suzuki H
    Pharmacol Ther; 2010 Feb; 125(2):230-48. PubMed ID: 19951720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing higher throughput methods to assess drug-drug interactions for CYP1A2, CYP2C9, CYP2C19, CYP2D6, rCYP2D6, and CYP3A4 in vitro using a single point IC(50).
    Gao F; Johnson DL; Ekins S; Janiszewski J; Kelly KG; Meyer RD; West M
    J Biomol Screen; 2002 Aug; 7(4):373-82. PubMed ID: 12230892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions.
    Obach RS; Walsky RL; Venkatakrishnan K; Gaman EA; Houston JB; Tremaine LM
    J Pharmacol Exp Ther; 2006 Jan; 316(1):336-48. PubMed ID: 16192315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavokawain A inhibits Cytochrome P450 in in vitro metabolic and inhibitory investigations.
    Niu L; Ding L; Lu C; Zuo F; Yao K; Xu S; Li W; Yang D; Xu X
    J Ethnopharmacol; 2016 Sep; 191():350-359. PubMed ID: 27318274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of drug metabolizing enzymes for fusidic acid and its interactions with isoform-selective substrates in vitro.
    Chen D; Lin XX; Zhao Q; Xiao J; Peng SF; Xiao MF; Ouyang DS; Tan ZR; Wang YC; Peng JB; Zhang W; Chen Y
    Xenobiotica; 2017 Sep; 47(9):778-784. PubMed ID: 27571049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of accidental nortriptyline poisoning: the importance of cytochrome P450 for nortriptyline elimination investigated using a population-based pharmacokinetic simulator.
    Jornil J; Jensen KG; Larsen F; Linnet K
    Eur J Pharm Sci; 2011 Oct; 44(3):265-72. PubMed ID: 21854846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desvenlafaxine and venlafaxine exert minimal in vitro inhibition of human cytochrome P450 and P-glycoprotein activities.
    Oganesian A; Shilling AD; Young-Sciame R; Tran J; Watanyar A; Azam F; Kao J; Leung L
    Psychopharmacol Bull; 2009; 42(2):47-63. PubMed ID: 19629022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of liver metabolic function. Clinical implications.
    Brockmöller J; Roots I
    Clin Pharmacokinet; 1994 Sep; 27(3):216-48. PubMed ID: 7988103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 3A: ontogeny and drug disposition.
    de Wildt SN; Kearns GL; Leeder JS; van den Anker JN
    Clin Pharmacokinet; 1999 Dec; 37(6):485-505. PubMed ID: 10628899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.