These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9085241)

  • 1. Net-shaped hydroxyapatite implants for release of agents modulating periodontal-like tissues.
    Denissen H; van Beek E; Martinetti R; Klein C; van der Zee E; Ravaglioli A
    J Periodontal Res; 1997 Jan; 32(1 Pt 1):40-6. PubMed ID: 9085241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradable bisphosphonate-alkaline phosphatase-complexed hydroxyapatite implants in vitro.
    Denissen H; van Beek E; van den Bos T; de Blieck J; Klein C; van den Hooff A
    J Bone Miner Res; 1997 Feb; 12(2):290-7. PubMed ID: 9041063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ceramic hydroxyapatite implants for the release of bisphosphonate.
    Denissen H; van Beek E; Löwik C; Papapoulos S; van den Hooff A
    Bone Miner; 1994 May; 25(2):123-34. PubMed ID: 8086851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits.
    Piattelli M; Scarano A; Paolantonio M; Iezzi G; Petrone G; Piattelli A
    J Oral Implantol; 2002; 28(1):2-8. PubMed ID: 12498456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alveolar bone response to submerged bisphosphonate-complexed hydroxyapatite implants.
    Denissen H; Montanari C; Martinetti R; van Lingen A; van den Hooff A
    J Periodontol; 2000 Feb; 71(2):279-86. PubMed ID: 10711619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal osteoconduction and repair in and around submerged highly bisphosphonate-complexed hydroxyapatite implants in rat tibiae.
    Denissen H; Martinetti R; van Lingen A; van den Hooff A
    J Periodontol; 2000 Feb; 71(2):272-8. PubMed ID: 10711618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants.
    Jun YK; Kim WH; Kweon OK; Hong SH
    Biomaterials; 2003 Sep; 24(21):3731-9. PubMed ID: 12818545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration.
    Raina DB; Isaksson H; Teotia AK; Lidgren L; Tägil M; Kumar A
    J Control Release; 2016 Aug; 235():365-378. PubMed ID: 27252151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of adsorbed vitamin D and K to hydroxyapatite on ALP activity of MC3T3-E1 cell.
    Ozeki K; Aoki H; Fukui Y
    J Mater Sci Mater Med; 2008 Apr; 19(4):1753-7. PubMed ID: 17943413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic activity of bone morphogenetic protein and hydroxyapatite composite implants.
    Herr G; Wahl D; Küsswetter W
    Ann Chir Gynaecol Suppl; 1993; 207():99-107. PubMed ID: 8154844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite particles as drug carriers for proteins.
    Tomoda K; Ariizumi H; Nakaji T; Makino K
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):226-35. PubMed ID: 19939646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of dual-energy X-ray absorptiometry (DEXA) to follow mineral content changes in small ceramic implants in rats.
    Mosheiff R; Klein BY; Leichter I; Chaimsky G; Nyska A; Peyser A; Segal D
    Biomaterials; 1992; 13(7):462-6. PubMed ID: 1321675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2.
    Alam MI; Asahina I; Ohmamiuda K; Takahashi K; Yokota S; Enomoto S
    Biomaterials; 2001 Jun; 22(12):1643-51. PubMed ID: 11374466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Kim HW; Knowles JC; Kim HE
    Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.
    Zhang Y; Zhou K; Bao Y; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis.
    Tsuruga E; Takita H; Itoh H; Wakisaka Y; Kuboki Y
    J Biochem; 1997 Feb; 121(2):317-24. PubMed ID: 9089406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular ceramic scaffolds for individual implants.
    Biggemann J; Pezoldt M; Stumpf M; Greil P; Fey T
    Acta Biomater; 2018 Oct; 80():390-400. PubMed ID: 30213769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2011 Jun; 22(6):651-7. PubMed ID: 21044164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration.
    Nandi SK; Kundu B; Mukherjee J; Mahato A; Datta S; Balla VK
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():816-823. PubMed ID: 25687013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.