These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9086387)

  • 1. Threshold-distance measures from electrical stimulation of human brainstem.
    Shannon RV; Moore JK; McCreery DB; Portillo F
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):70-4. PubMed ID: 9086387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twenty-year report of the first auditory brain stem nucleus implant.
    House WF; Hitselberger WE
    Ann Otol Rhinol Laryngol; 2001 Feb; 110(2):103-4. PubMed ID: 11219513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychophysical measures from electrical stimulation of the human cochlear nucleus.
    Shannon RV; Otto SR
    Hear Res; 1990 Aug; 47(1-2):159-68. PubMed ID: 2228792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation.
    Snyder RL; Rebscher SJ; Cao KL; Leake PA; Kelly K
    Hear Res; 1990 Dec; 50(1-2):7-33. PubMed ID: 2076984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study.
    Xu J; Shepherd RK; Millard RE; Clark GM
    Hear Res; 1997 Mar; 105(1-2):1-29. PubMed ID: 9083801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleus 20-channel and 21-channel auditory brain stem implants: first European experiences.
    Laszig R; Sollmann WP; Marangos N; Charachon R; Ramsden R
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():28-30. PubMed ID: 7668669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The restoration of hearing in neurofibromatosis type 2.
    Laszig R; Sollmann WP; Marangos N
    J Laryngol Otol; 1995 May; 109(5):385-9. PubMed ID: 7797992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2012; 33(3):367-76. PubMed ID: 22048258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear nerve stimulation with a 3-dimensional penetrating electrode array.
    Hillman T; Badi AN; Normann RA; Kertesz T; Shelton C
    Otol Neurotol; 2003 Sep; 24(5):764-8. PubMed ID: 14501454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical field interactions in different cochlear implant systems.
    Boëx C; de Balthasar C; Kós MI; Pelizzone M
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2049-57. PubMed ID: 14587604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses).
    Guevara N; Hoen M; Truy E; Gallego S
    PLoS One; 2016; 11(5):e0155008. PubMed ID: 27149268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The first successful case of hearing produced by electrical stimulation of the human midbrain.
    Colletti V; Shannon R; Carner M; Sacchetto L; Turazzi S; Masotto B; Colletti L
    Otol Neurotol; 2007 Jan; 28(1):39-43. PubMed ID: 17195744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory brainstem and cochlear implants: functional results obtained after one year of rehabilitation.
    Di Nardo W; Fetoni A; Buldrini S; Di Girolamo S
    Eur Arch Otorhinolaryngol; 2001 Jan; 258(1):5-8. PubMed ID: 11271437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recording of electrically evoked auditory brainstem responses after electrical stimulation with biphasic, triphasic and precision triphasic pulses.
    Bahmer A; Polak M; Baumann U
    Hear Res; 2010 Jan; 259(1-2):75-85. PubMed ID: 19850116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory brainstem implants in neurofibromatosis Type 2: is open speech perception feasible?
    Matthies C; Brill S; Varallyay C; Solymosi L; Gelbrich G; Roosen K; Ernestus RI; Helms J; Hagen R; Mlynski R; Shehata-Dieler W; Müller J
    J Neurosurg; 2014 Feb; 120(2):546-58. PubMed ID: 24329026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory cortical images of cochlear-implant stimuli: coding of stimulus channel and current level.
    Middlebrooks JC; Bierer JA
    J Neurophysiol; 2002 Jan; 87(1):493-507. PubMed ID: 11784765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a multichannel auditory brainstem implant for neurofibromatosis type 2.
    Schwartz MS; Otto SR; Brackmann DE; Hitselberger WE; Shannon RV
    Stereotact Funct Neurosurg; 2003; 81(1-4):110-4. PubMed ID: 14742973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures.
    Firszt JB; Chambers And RD; Kraus N
    Ear Hear; 2002 Dec; 23(6):516-31. PubMed ID: 12476089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.