BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9087315)

  • 21. Effects of potassium-aspartate salt administration on glycogen use in the rat during a swimming stress.
    Trudeau F; Murphy R
    Physiol Behav; 1993 Jul; 54(1):7-12. PubMed ID: 8327610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The effect of endurance training and exhaustive exercise on metallothionein in rats].
    Li Z; Gao Y; Li S; Chen K; Ge S; Pang Y; Tang C
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 Feb; 13(1):16-7. PubMed ID: 10074301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of supplementation with grass carp protein versus peptide on swimming endurance in mice.
    Ren J; Zhao M; Wang H; Cui C; You L
    Nutrition; 2011; 27(7-8):789-95. PubMed ID: 21145208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle.
    Robinson TM; Sewell DA; Hultman E; Greenhaff PL
    J Appl Physiol (1985); 1999 Aug; 87(2):598-604. PubMed ID: 10444618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise.
    Lancha AH; Recco MB; Abdalla DS; Curi R
    Physiol Behav; 1995 Feb; 57(2):367-71. PubMed ID: 7716217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of intermittent high-intensity exercise and carbohydrate supplementation on IGF-1 and glycogen of Wistar rats.
    Giesel VT; Reche M; Schneider L; Araújo LC; Scalco R; von Eye Corleta H; Capp E
    Growth Horm IGF Res; 2009 Apr; 19(2):156-61. PubMed ID: 18835207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of endurance exercise training on muscle glycogen supercompensation in rats.
    Nakatani A; Han DH; Hansen PA; Nolte LA; Host HH; Hickner RC; Holloszy JO
    J Appl Physiol (1985); 1997 Feb; 82(2):711-5. PubMed ID: 9049757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transgenic mice overexpressing GLUT-1 protein in muscle exhibit increased muscle glycogenesis after exercise.
    Ren JM; Barucci N; Marshall BA; Hansen P; Mueckler MM; Shulman GI
    Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E588-92. PubMed ID: 10751190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycogen repletion in different types of muscle and in liver after exhausting exercise.
    Terjung RL; Baldwin KM; Winder WW; Holloszy JO
    Am J Physiol; 1974 Jun; 226(6):1387-91. PubMed ID: 4833994
    [No Abstract]   [Full Text] [Related]  

  • 30. The effects of swimming and running regimens on skeletal muscle glycogen in the rat.
    Ness GW; Gardiner PF; Secord DC; Taylor AW
    Rev Can Biol; 1975; 34(1-2):45-50. PubMed ID: 1178940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced glycogen repletion in liver and skeletal muscle with citrate orally fed after exhaustive treadmill running and swimming.
    Saitoh S; Yoshitake Y; Suzuki M
    J Nutr Sci Vitaminol (Tokyo); 1983 Feb; 29(1):45-52. PubMed ID: 6864348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of impaired glucose uptake on postexercise glycogen repletion in skeletal muscles of insulin-treated streptozotocin-diabetic fasted rats.
    Ferreira LD; Xu D; Palmer TN; Fournier PA
    Metabolism; 2005 Nov; 54(11):1420-7. PubMed ID: 16253628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postexercise muscle triacylglycerol and glycogen metabolism in obese insulin-resistant zucker rats.
    Bruce CR; Lee JS; Kiens B; Hawley JA
    Obes Res; 2004 Jul; 12(7):1158-65. PubMed ID: 15292481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycogen repletion following continuous and intermittent exercise to exhaustion.
    Gaesser GA; Brooks GA
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Oct; 49(4):722-8. PubMed ID: 7440286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats.
    Morifuji M; Kanda A; Koga J; Kawanaka K; Higuchi M
    Amino Acids; 2010 Apr; 38(4):1109-15. PubMed ID: 19593593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dehydroepiandrosterone Supplementation Combined with Whole-Body Vibration Training Affects Testosterone Level and Body Composition in Mice.
    Chen WC; Chen YM; Huang CC; Tzeng YD
    Int J Med Sci; 2016; 13(10):730-740. PubMed ID: 27766021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise.
    Sewell DA; Robinson TM; Greenhaff PL
    J Appl Physiol (1985); 2008 Feb; 104(2):508-12. PubMed ID: 18032580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic adaptation to daily exercise of moderate intensity to exhaustion in the rat.
    Zendzian-Piotrowska M; Górski J
    Eur J Appl Physiol Occup Physiol; 1993; 67(1):77-82. PubMed ID: 8375371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes of glycogen content in liver, skeletal muscle, and heart from fasted rats.
    Kokubun E; Hirabara SM; Fiamoncini J; Curi R; Haebisch H
    Cell Biochem Funct; 2009 Oct; 27(7):488-95. PubMed ID: 19711486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of creatine supplementation during rapid body mass reduction on metabolism and isokinetic muscle performance capacity.
    Oöpik V; Pääsuke M; Timpmann S; Medijainen L; Ereline J; Smirnova T
    Eur J Appl Physiol Occup Physiol; 1998 Jun; 78(1):83-92. PubMed ID: 9660161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.