These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 908793)

  • 1. Control of vocal-tract length in speech.
    Riordan CJ
    J Acoust Soc Am; 1977 Oct; 62(4):998-1002. PubMed ID: 908793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preservation of vocal tract length in speech. A negative finding.
    Tuller B; Fitch HL
    J Acoust Soc Am; 1980 Mar; 67(3):1068-70. PubMed ID: 7358911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acoustical significance of tongue, lip, and larynx maneuvers in rounded palatal vowels.
    Wood S
    J Acoust Soc Am; 1986 Aug; 80(2):391-401. PubMed ID: 3745671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lip Movements for an Unfamiliar Vowel: Mandarin Front Rounded Vowel Produced by Japanese Speakers.
    Saito H
    J Speech Lang Hear Res; 2016 Dec; 59(6):S1558-S1565. PubMed ID: 28002836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
    McGowan RS; Cushing S
    J Acoust Soc Am; 1999 Aug; 106(2):1090-105. PubMed ID: 10462814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of bite-block vowels: acoustic equivalence by selective compensation.
    Gay T; Lindblom B; Lubker J
    J Acoust Soc Am; 1981 Mar; 69(3):802-10. PubMed ID: 7240561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship of vocal tract shape to three voice qualities.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 2001 Apr; 109(4):1651-67. PubMed ID: 11325134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic consequences of differences in male and female vocal tract dimensions.
    Simpson AP
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2153-64. PubMed ID: 11386567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lip-larynx coordination in speech: effects of mechanical perturbations to the lower lip.
    Munhall KG; Löfqvist A; Kelso JA
    J Acoust Soc Am; 1994 Jun; 95(6):3605-16. PubMed ID: 8046150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sketches of chimpanzee (Pan troglodytes) hoo's: vowels by any other name?
    Ekström AG; Edlund J
    Primates; 2024 Mar; 65(2):81-88. PubMed ID: 38110671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic and articulatory analysis of French vowels produced by congenitally blind adults and sighted adults.
    Ménard L; Toupin C; Baum SR; Drouin S; Aubin J; Tiede M
    J Acoust Soc Am; 2013 Oct; 134(4):2975-87. PubMed ID: 24116433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of blindness on production-perception relationships: Compensation strategies for a lip-tube perturbation of the French [u].
    Ménard L; Turgeon C; Trudeau-Fisette P; Bellavance-Courtemanche M
    Clin Linguist Phon; 2016; 30(3-5):227-48. PubMed ID: 26403592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system.
    Callan DE; Kent RD; Guenther FH; Vorperian HK
    J Speech Lang Hear Res; 2000 Jun; 43(3):721-36. PubMed ID: 10877441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Managing the distinctiveness of phonemic nasal vowels: articulatory evidence from Hindi.
    Shosted R; Carignan C; Rong P
    J Acoust Soc Am; 2012 Jan; 131(1):455-65. PubMed ID: 22280607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labiovelar compensation in back vowels.
    de Jong KJ
    J Acoust Soc Am; 1997 Apr; 101(4):2221-33. PubMed ID: 9104024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech motor coordination and control: evidence from lip, jaw, and laryngeal movements.
    Gracco VL; Löfqvist A
    J Neurosci; 1994 Nov; 14(11 Pt 1):6585-97. PubMed ID: 7965062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation.
    Carey D; Miquel ME; Evans BG; Adank P; McGettigan C
    Cereb Cortex; 2017 May; 27(5):3064-3079. PubMed ID: 28334401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of body position on vocal tract acoustics: Acoustic pharyngometry and vowel formants.
    Vorperian HK; Kurtzweil SL; Fourakis M; Kent RD; Tillman KK; Austin D
    J Acoust Soc Am; 2015 Aug; 138(2):833-45. PubMed ID: 26328699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.