These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 908912)

  • 81. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding.
    Paula AR; Carolino AT; Silva CP; Samuels RI
    Parasit Vectors; 2011 May; 4():91. PubMed ID: 21615890
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Blood Meal Enhances Innexin mRNA Expression in the Midgut, Malpighian Tubules, and Ovaries of the Yellow Fever Mosquito Aedes aegypti.
    Calkins TL; Piermarini PM
    Insects; 2017 Nov; 8(4):. PubMed ID: 29113099
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Influence of blood meal on the responsiveness of olfactory receptor neurons in antennal sensilla trichodea of the yellow fever mosquito, Aedes aegypti.
    Siju KP; Hill SR; Hansson BS; Ignell R
    J Insect Physiol; 2010 Jun; 56(6):659-65. PubMed ID: 20153749
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Long-Term Mosquito culture with SkitoSnack, an artificial blood meal replacement.
    Kandel Y; Mitra S; Jimenez X; Rodriguez SD; Romero A; Blakely BN; Cho SY; Pelzman C; Hansen IA
    PLoS Negl Trop Dis; 2020 Sep; 14(9):e0008591. PubMed ID: 32941432
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A comparison of aquaporin expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic freshwater and iso-osmotic brackish water.
    Misyura L; Grieco Guardian E; Durant AC; Donini A
    PLoS One; 2020; 15(8):e0234892. PubMed ID: 32817668
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Exploratory phosphoproteomics profiling of Aedes aegypti Malpighian tubules during blood meal processing reveals dramatic transition in function.
    Kandel Y; Pinch M; Lamsal M; Martinez N; Hansen IA
    PLoS One; 2022; 17(7):e0271248. PubMed ID: 35802606
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cloning and tissue distribution of two Na+/H+ exchangers from the Malpighian tubules of Aedes aegypti.
    Hart SJ; Knezetic JA; Petzel DH
    Arch Insect Biochem Physiol; 2002 Nov; 51(3):121-35. PubMed ID: 12386840
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cloning and expression analysis of a 5HT7-like serotonin receptor cDNA from mosquito Aedes aegypti female excretory and respiratory systems.
    Pietrantonio PV; Jagge C; McDowell C
    Insect Mol Biol; 2001 Aug; 10(4):357-69. PubMed ID: 11520359
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Calcitonin receptor 1 (AedaeGPCRCAL1) hindgut expression and direct role in myotropic action in females of the mosquito Aedes aegypti (L.).
    Kwon H; Pietrantonio PV
    Insect Biochem Mol Biol; 2013 Jul; 43(7):588-93. PubMed ID: 23523607
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Locust diuretic hormone-stimulated synthesis and excretion of cyclic-AMP: a novel Malpighian tubule bioassay.
    Rafaeli A; Pines M; Stern PS; Applebaum SW
    Gen Comp Endocrinol; 1984 Apr; 54(1):35-42. PubMed ID: 6327460
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Feeding and Quantifying Animal-Derived Blood and Artificial Meals in Aedes aegypti Mosquitoes.
    Jové V; Venkataraman K; Gabel TM; Duvall LB
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33165316
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Use of mechanical and behavioural methods to eliminate female Aedes aegypti and Aedes albopictus for sterile insect technique and incompatible insect technique applications.
    Gunathilaka N; Ranathunge T; Udayanga L; Wijegunawardena A; Gilles JRL; Abeyewickreme W
    Parasit Vectors; 2019 Mar; 12(1):148. PubMed ID: 30922368
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Further characterization of refractoriness in Aedes aegypti (L.) to infection by Dirofilaria immitis (Leidy).
    Nayar JK; Knight JW; Bradley TJ
    Exp Parasitol; 1988 Jun; 66(1):124-31. PubMed ID: 3366210
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Abdominal distention terminates subsequent host-seeking behaviour of Aedes aegypti following a blood meal.
    Klowden MJ; Lea AO
    J Insect Physiol; 1979; 25(7):583-5. PubMed ID: 544697
    [No Abstract]   [Full Text] [Related]  

  • 96. Amino acid sequence and biological activity of a calcitonin-like diuretic hormone (DH31) from Rhodnius prolixus.
    Brugge VA; Schooley DA; Orchard I
    J Exp Biol; 2008 Feb; 211(Pt 3):382-90. PubMed ID: 18203994
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fluid secretion and microvillar ultrastructure in mosquito malpighian tubules.
    Bradley TJ; Snyder C
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R1096-102. PubMed ID: 2589535
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L.). III. The involvement of the ovaries and ecdysone.
    Cole SJ; Gillett JD
    Proc R Soc Lond B Biol Sci; 1979 Aug; 205(1160):411-22. PubMed ID: 41256
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Rhodnius prolixus: effects of the neolignan burchellin on in vivo and in vitro diuresis.
    Cabral MM; Kollien AH; Kleffmann T; Azambuja P; Gottlieb OR; Garcia ES; Schaub GA
    Parasitol Res; 2000 Sep; 86(9):710-6. PubMed ID: 11002977
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Male sexual history influences female fertility and re-mating incidence in the mosquito vector Aedes aegypti (Diptera: Culicidae).
    Felipe Ramírez-Sánchez L; Camargo C; Avila FW
    J Insect Physiol; 2020; 121():104019. PubMed ID: 32032591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.