BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9089290)

  • 1. Symmetric GroEL-GroES complexes can contain substrate simultaneously in both GroEL rings.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1997 Mar; 405(2):195-9. PubMed ID: 9089290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding.
    Llorca O; Carrascosa JL; Valpuesta JM
    J Biol Chem; 1996 Jan; 271(1):68-76. PubMed ID: 8550627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
    Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL.
    Koike-Takeshita A; Mitsuoka K; Taguchi H
    J Biol Chem; 2014 Oct; 289(43):30005-11. PubMed ID: 25202010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes.
    Engel A; Hayer-Hartl MK; Goldie KN; Pfeifer G; Hegerl R; Müller S; da Silva AC; Baumeister W; Hartl FU
    Science; 1995 Aug; 269(5225):832-6. PubMed ID: 7638600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of symmetrical GroEL-GroES complexes in the presence of ATP.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1994 May; 345(2-3):181-6. PubMed ID: 7911087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Regulates Stability, Ligand Binding (Mg
    Walker TE; Shirzadeh M; Sun HM; McCabe JW; Roth A; Moghadamchargari Z; Clemmer DE; Laganowsky A; Rye H; Russell DH
    J Am Chem Soc; 2022 Feb; 144(6):2667-2678. PubMed ID: 35107280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer.
    Azem A; Diamant S; Kessel M; Weiss C; Goloubinoff P
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12021-5. PubMed ID: 8618836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
    Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB
    EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 16. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin.
    Yoda H; Koike-Takeshita A
    Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures.
    Mendoza JA; Warren T; Dulin P
    Biochem Biophys Res Commun; 1996 Dec; 229(1):271-4. PubMed ID: 8954117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GroEL-assisted protein folding: does it occur within the chaperonin inner cavity?
    Marchenkov VV; Semisotnov GV
    Int J Mol Sci; 2009 May; 10(5):2066-2083. PubMed ID: 19564940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers.
    Taguchi H; Tsukuda K; Motojima F; Koike-Takeshita A; Yoshida M
    J Biol Chem; 2004 Oct; 279(44):45737-43. PubMed ID: 15347650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL and the GroEL-GroES Complex.
    Ishii N
    Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.