These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 9089791)
21. Sites of action of segmental and descending control of transmission on pathways mediating PAD of Ia- and Ib-afferent fibers in cat spinal cord. Rudomín P; Jiménez I; Solodkin M; Dueñas S J Neurophysiol; 1983 Oct; 50(4):743-69. PubMed ID: 6313870 [TBL] [Abstract][Full Text] [Related]
22. Development of the pyramidal tract in the hamster. I. A light microscopic study. Reh T; Kalil K J Comp Neurol; 1981 Jul; 200(1):55-67. PubMed ID: 7251945 [TBL] [Abstract][Full Text] [Related]
23. Integration in descending motor pathways controlling the forelimb in the cat. 4. Corticospinal inhibition of forelimb motoneurones mediated by short propriospinal neurones. Illert M; Tanaka R Exp Brain Res; 1978 Jan; 31(1):131-41. PubMed ID: 639906 [TBL] [Abstract][Full Text] [Related]
24. Input-output organization of reticulospinal neurones, with special reference to connexions with dorsal neck motoneurones in the cat. Iwamoto Y; Sasaki S; Suzuki I Exp Brain Res; 1990; 80(2):260-76. PubMed ID: 2358042 [TBL] [Abstract][Full Text] [Related]
25. Motor Cortex Activity Organizes the Developing Rubrospinal System. Williams PT; Martin JH J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884 [TBL] [Abstract][Full Text] [Related]
26. Ascending tract neurones processing information from group II muscle afferents in sacral segments of the feline spinal cord. Riddell JS; Jankowska E; Hammar I; Szabo-Läckberg Z J Physiol; 1994 Mar; 475(3):469-81. PubMed ID: 8006829 [TBL] [Abstract][Full Text] [Related]
27. Ascending spinal influences on rubrospinal cells in the cat. Rathelot JA; Padel Y Exp Brain Res; 1997 Sep; 116(2):326-40. PubMed ID: 9348131 [TBL] [Abstract][Full Text] [Related]
28. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Rudomin P; Lomelí J; Quevedo J Exp Brain Res; 2004 Jun; 156(3):377-91. PubMed ID: 14985894 [TBL] [Abstract][Full Text] [Related]
29. Electrophysiological evidence against the hypothesis that corticospinal fibres send collaterals to the lateral reticular nucleus. Alstermark B; Lundberg A Exp Brain Res; 1982; 47(1):148-50. PubMed ID: 6288430 [TBL] [Abstract][Full Text] [Related]
30. Indications for coupling between feline spinocervical tract neurones and midlumbar interneurones. Djouhri L; Jankowska E Exp Brain Res; 1998 Mar; 119(1):39-46. PubMed ID: 9521534 [TBL] [Abstract][Full Text] [Related]
31. Cells of origin of ascending and descending as well as branching fibers in the cervical spinal cord of the pigeon. Necker R Neurosci Lett; 1990 Oct; 119(1):1-4. PubMed ID: 2097571 [TBL] [Abstract][Full Text] [Related]
32. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection. Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199 [TBL] [Abstract][Full Text] [Related]
34. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750 [TBL] [Abstract][Full Text] [Related]
35. Honeycomb-like structure of the intermediate layers of the rat superior colliculus: afferent and efferent connections. Mana S; Chevalier G Neuroscience; 2001; 103(3):673-93. PubMed ID: 11274787 [TBL] [Abstract][Full Text] [Related]
36. The development of descending projections from the brainstem to the spinal cord in the fetal sheep. Stockx EM; Anderson CR; Murphy SM; Cooke IR; Berger PJ BMC Neurosci; 2007 Jun; 8():40. PubMed ID: 17577416 [TBL] [Abstract][Full Text] [Related]
37. Spinohypothalamic tract neurons in the cervical enlargement of rats: locations of antidromically identified ascending axons and their collateral branches in the contralateral brain. Kostarczyk E; Zhang X; Giesler GJ J Neurophysiol; 1997 Jan; 77(1):435-51. PubMed ID: 9120585 [TBL] [Abstract][Full Text] [Related]
38. Corticospinal neurones of the supplementary motor area of monkeys. A single unit study. Macpherson J; Wiesendanger M; Marangoz C; Miles TS Exp Brain Res; 1982; 48(1):81-8. PubMed ID: 6291974 [TBL] [Abstract][Full Text] [Related]
39. Red nucleus projections to distinct motor neuron pools in the rat spinal cord. Küchler M; Fouad K; Weinmann O; Schwab ME; Raineteau O J Comp Neurol; 2002 Jul; 448(4):349-59. PubMed ID: 12115698 [TBL] [Abstract][Full Text] [Related]
40. Overview of neurophysiology of movement control. Rothwell JC Clin Neurol Neurosurg; 2012 Jun; 114(5):432-5. PubMed ID: 22280985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]