These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9089814)

  • 1. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length.
    Peters GH; van Aalten DM; Svendsen A; Bywater R
    Protein Eng; 1997 Feb; 10(2):149-58. PubMed ID: 9089814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational studies of the activation of lipases and the effect of a hydrophobic environment.
    Peters GH; Toxvaerd S; Olsen OH; Svendsen A
    Protein Eng; 1997 Feb; 10(2):137-47. PubMed ID: 9089813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unusual buried polar cluster in a family of fungal lipases.
    Derewenda U; Swenson L; Green R; Wei Y; Dodson GG; Yamaguchi S; Haas MJ; Derewenda ZS
    Nat Struct Biol; 1994 Jan; 1(1):36-47. PubMed ID: 7656005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase.
    Peters GH; Bywater RP
    Protein Eng; 1999 Sep; 12(9):747-54. PubMed ID: 10506284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current progress in crystallographic studies of new lipases from filamentous fungi.
    Derewenda U; Swenson L; Green R; Wei Y; Yamaguchi S; Joerger R; Haas MJ; Derewenda ZS
    Protein Eng; 1994 Apr; 7(4):551-7. PubMed ID: 8029211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase.
    Holmquist M; Norin M; Hult K
    Lipids; 1993 Aug; 28(8):721-6. PubMed ID: 8377587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the dynamics of rhizomucor miehei lipase at different temperatures.
    Peters GH; Toxvaerd S; Andersen KV; Svendsen A
    J Biomol Struct Dyn; 1999 Apr; 16(5):1003-18. PubMed ID: 10333171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the substrate binding pocket in the presence of an inhibitor covalently attached to a fungal lipase.
    Peters GH; Jensen MO; Bywater RP
    J Biomol Struct Dyn; 2001 Aug; 19(1):1-14. PubMed ID: 11565841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase.
    Peters GH; Olsen OH; Svendsen A; Wade RC
    Biophys J; 1996 Jul; 71(1):119-29. PubMed ID: 8804595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modelling studies of substrate binding to the lipase from Rhizomucor miehei.
    Yagnik AT; Littlechild JA; Turner NJ
    J Comput Aided Mol Des; 1997 May; 11(3):256-64. PubMed ID: 9263852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and sequence analysis of cDNA encoding Rhizopus niveus lipase.
    Kugimiya W; Otani Y; Kohno M; Hashimoto Y
    Biosci Biotechnol Biochem; 1992 May; 56(5):716-9. PubMed ID: 1368341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases.
    Peters GH; van Aalten DM; Edholm O; Toxvaerd S; Bywater R
    Biophys J; 1996 Nov; 71(5):2245-55. PubMed ID: 8913568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies of Rhizomucor miehei lipase activation.
    Norin M; Olsen O; Svendsen A; Edholm O; Hult K
    Protein Eng; 1993 Nov; 6(8):855-63. PubMed ID: 8309933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural model of mono- and diacylglycerol lipase from Penicillium camembertii.
    Isobe K; Aumann KD; Schmid RD
    J Biotechnol; 1994 Jan; 32(1):83-8. PubMed ID: 7764452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The consequences of engineering an extra disulfide bond in the Penicillium camembertii mono- and diglyceride specific lipase.
    Yamaguchi S; Takeuchi K; Mase T; Oikawa K; McMullen T; Derewenda U; McElhaney RN; Kay CM; Derewenda ZS
    Protein Eng; 1996 Sep; 9(9):789-95. PubMed ID: 8888145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants.
    Beer HD; Wohlfahrt G; McCarthy JE; Schomburg D; Schmid RD
    Protein Eng; 1996 Jun; 9(6):507-17. PubMed ID: 8862551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem.
    Scheib H; Pleiss J; Kovac A; Paltauf F; Schmid RD
    Protein Sci; 1999 Jan; 8(1):215-21. PubMed ID: 10210199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes.
    Jääskeläinen S; Verma CS; Hubbard RE; Linko P; Caves LS
    Protein Sci; 1998 Jun; 7(6):1359-67. PubMed ID: 9655340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of an extracellular acid-resistant lipase produced by Rhizopus javanicus.
    Uyttenbroeck W; Hendriks D; Vriend G; De Baere I; Moens L; Scharpé S
    Biol Chem Hoppe Seyler; 1993 Apr; 374(4):245-54. PubMed ID: 8329142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.