These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9090840)

  • 61. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and alpha-amylase genes from Debaryomyces occidentalis.
    Ghang DM; Yu L; Lim MH; Ko HM; Im SY; Lee HB; Bai S
    Biotechnol Lett; 2007 Aug; 29(8):1203-8. PubMed ID: 17505783
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of the STA2-encoded glucoamylase in Saccharomyces cerevisiae is subject to feed-back control.
    Suntsov NI; Kuchin SV; Neystat MA; Mashko SV; Benevolensky SV
    Yeast; 1991 Feb; 7(2):119-25. PubMed ID: 2063624
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae.
    Kleinman MJ; Wilkinson AE; Wright IP; Evans IH; Bevan EA
    Biochem J; 1988 Jan; 249(1):163-70. PubMed ID: 3124820
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.
    Kärenlampi SO; Marin E; Hänninen OO
    Biochem J; 1981 Feb; 194(2):407-13. PubMed ID: 7030318
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Glucose catabolite repression of glucoamylase biosynthesis by the yeast Endomycopsis fibuligera].
    Afanas'eva VP; Gridneva TV; Zaborina OE; Bourd GI
    Prikl Biokhim Mikrobiol; 1978; 14(6):878-85. PubMed ID: 219427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The bio refinery; producing feed and fuel from grain.
    Scholey DV; Burton EJ; Williams PE
    Food Chem; 2016 Apr; 197(Pt A):937-42. PubMed ID: 26617037
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.
    Liu A; Lang Q; Liang B; Shi J
    Biosens Bioelectron; 2017 Jan; 87():25-30. PubMed ID: 27513684
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae.
    Hara KY; Kim S; Kiriyama K; Yoshida H; Arai S; Ishii J; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2012 May; 7(5):686-9. PubMed ID: 22294378
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Improvement of maltotriose fermentation by Saccharomyces cerevisiae.
    Stambuk BU; Alves SL; Hollatz C; Zastrow CR
    Lett Appl Microbiol; 2006 Oct; 43(4):370-6. PubMed ID: 16965366
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain.
    Liu XF; Wang ZY; Wang JJ; Lu Y; He XP; Zhang BR
    Lett Appl Microbiol; 2009 Jul; 49(1):117-23. PubMed ID: 19413763
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease.
    Alves SL; Thevelein JM; Stambuk BU
    Lett Appl Microbiol; 2018 Oct; 67(4):377-383. PubMed ID: 29992585
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus.
    Gibson BR; Storgårds E; Krogerus K; Vidgren V
    Yeast; 2013 Jul; 30(7):255-66. PubMed ID: 23695993
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process.
    Koike Y; An MZ; Tang YQ; Syo T; Osaka N; Morimura S; Kida K
    J Biosci Bioeng; 2009 Dec; 108(6):508-12. PubMed ID: 19914584
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids.
    Zuchowska M; Jaenicke E; König H; Claus H
    Yeast; 2015 Nov; 32(11):657-69. PubMed ID: 26202678
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.
    Gumienna M; Lasik M; Szambelan K; Czarnecki Z
    Acta Sci Pol Technol Aliment; 2011; 10(4):467-74. PubMed ID: 22230928
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.
    Pacheco AM; Gondim DR; Gonçalves LR
    Appl Biochem Biotechnol; 2010 May; 161(1-8):209-17. PubMed ID: 19798473
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.
    Wang R; Wang D; Gao X; Hong J
    Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations.
    Struyf N; Laurent J; Lefevere B; Verspreet J; Verstrepen KJ; Courtin CM
    Food Chem; 2017 Mar; 218():89-98. PubMed ID: 27719961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impact of available nitrogen and sugar concentration in musts on alcoholic fermentation and subsequent wine spoilage by Brettanomyces bruxellensis.
    Childs BC; Bohlscheid JC; Edwards CG
    Food Microbiol; 2015 Apr; 46():604-609. PubMed ID: 25475334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.