These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 9092051)
1. [Biodynamic response to the windblast in expulsions with an ejection seat: the pathogenetic mechanism, analysis and prevention of lesions due to aerodynamic wind pressure]. Rotondo G Riv Med Aeronaut Spaz; 1975; 38(2-3):209-34. PubMed ID: 9092051 [No Abstract] [Full Text] [Related]
2. [Vertebral lesions due to being expelled with an ejection seat. The mechanism, diagnosis and prevention results and means]. Rotondo G Riv Med Aeronaut Spaz; 1975; 38(1):62-77 concl. PubMed ID: 9092049 [No Abstract] [Full Text] [Related]
3. [Vertebral injuries in aeronautical medicine with special reference to ejection in seat launching and descending by parachute]. Rametta E Minerva Med; 1973 Sep; 64(68):3522-49. PubMed ID: 4777340 [No Abstract] [Full Text] [Related]
4. Kinematic response of the spine during simulated aircraft ejections. Damon AM; Lessley DJ; Salzar RS; Bass CR; Shen FH; Paskoff GR; Shender BS Aviat Space Environ Med; 2010 May; 81(5):453-9. PubMed ID: 20464811 [TBL] [Abstract][Full Text] [Related]
6. Spinal injury in a U.S. Army light observation helicopter. Shanahan DF; Mastroianni GR Aviat Space Environ Med; 1984 Jan; 55(1):32-40. PubMed ID: 6696693 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of spinal injury due to caudocephalad accleration. King AI; Prasad P; Ewing CL Orthop Clin North Am; 1975 Jan; 6(1):19-31. PubMed ID: 1113967 [No Abstract] [Full Text] [Related]
8. Effects of bending on the vertebral column during +Gz acceleration. Vulcan AP; King AI; Nakamura GS Aerosp Med; 1970 Mar; 41(3):294-300. PubMed ID: 5417369 [No Abstract] [Full Text] [Related]
9. Transmissibility of helicopter vibration in the spines of pilots in flight. De Oliveira CG; Nadal J Aviat Space Environ Med; 2005 Jun; 76(6):576-80. PubMed ID: 15945403 [TBL] [Abstract][Full Text] [Related]
10. Effect of flight accelerations on human tolerance to impact ejection overload. Moiseyev YuB J Gravit Physiol; 1995; 2(1):P85-7. PubMed ID: 11538945 [No Abstract] [Full Text] [Related]
11. Reappraisal of biodynamic implications of human ejections. Henzel JH; Mohr GC; von Gierke HE Aerosp Med; 1968 Mar; 39(3):231-40. PubMed ID: 5636006 [No Abstract] [Full Text] [Related]
12. Tolerance limit of human head-neck region to high speed windblast. Zhang Y; Wu G Space Med Med Eng (Beijing); 1997 Feb; 10(1):6-10. PubMed ID: 11539894 [TBL] [Abstract][Full Text] [Related]
13. Studies of limb-dislodging forces acting on an ejection seat occupant. Schneck DJ Aviat Space Environ Med; 1980 Mar; 51(3):256-64. PubMed ID: 7362573 [TBL] [Abstract][Full Text] [Related]
14. Spinal injuries caused by the acceleration of ejection. Lewis ME J R Army Med Corps; 2002 Mar; 148(1):22-6. PubMed ID: 12024887 [TBL] [Abstract][Full Text] [Related]
16. Review of major injuries and fatalities in USAF ejections, 1981-1995. Collins R; McCarthy GW; Kaleps I; Knox FS Biomed Sci Instrum; 1997; 33():350-3. PubMed ID: 9731384 [TBL] [Abstract][Full Text] [Related]
17. Biodynamic effects of canopy loss in the TF-15 aircraft. Kendall WF; Hill RC Aviat Space Environ Med; 1979 Apr; 50(4):338-42. PubMed ID: 464952 [TBL] [Abstract][Full Text] [Related]
18. [Aerodynamic characteristics of crewman's arms during windblast]. Zhang YR; Wu GR Space Med Med Eng (Beijing); 2003 Oct; 16(5):344-8. PubMed ID: 14753234 [TBL] [Abstract][Full Text] [Related]
19. Frequency of the "push-pull effect" in U.S. Air Force fighter operations. Michaud VJ; Lyons TJ; Hansen CM Aviat Space Environ Med; 1998 Nov; 69(11):1083-6. PubMed ID: 9819166 [TBL] [Abstract][Full Text] [Related]
20. Comparison of acceleration subjects to other populations: spinal anomaly distribution. Popper SE; Morris CE; Briggs J; Fisher F Aviat Space Environ Med; 1997 May; 68(5):426-31. PubMed ID: 9143754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]