These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9092457)

  • 1. Hydroxyl and water molecule orientations in trypsin: comparison to molecular dynamic structures.
    McDowell RS; Kossiakoff AA
    Basic Life Sci; 1996; 64():273-87. PubMed ID: 9092457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of neutron diffraction and molecular dynamics structures: hydroxyl group and water molecule orientations in trypsin.
    McDowell RS; Kossiakoff AA
    J Mol Biol; 1995 Jul; 250(4):553-70. PubMed ID: 7616573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG
    Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
    Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM
    Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl hydrogen conformations in trypsin determined by the neutron diffraction solvent difference map method: relative importance of steric and electrostatic factors in defining hydrogen-bonding geometries.
    Kossiakoff AA; Shpungin J; Sintchak MD
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4468-72. PubMed ID: 2352930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison.
    Brünger AT; Karplus M
    Proteins; 1988; 4(2):148-56. PubMed ID: 3227015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron Nucleic Acid Crystallography.
    Chatake T
    Methods Mol Biol; 2016; 1320():283-300. PubMed ID: 26227050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography.
    Chen JC; Hanson BL; Fisher SZ; Langan P; Kovalevsky AY
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15301-6. PubMed ID: 22949690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron structure of subtilisin BPN': effects of chemical environment on hydrogen-bonding geometries and the pattern of hydrogen-deuterium exchange in secondary structure elements.
    Kossiakoff AA; Ultsch M; White S; Eigenbrot C
    Biochemistry; 1991 Feb; 30(5):1211-21. PubMed ID: 1991100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.
    Chatake T; Fujiwara S
    Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):71-82. PubMed ID: 26894536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What are the current limits on determination of protonation state using neutron macromolecular crystallography?
    Liebschner D; Afonine PV; Moriarty NW; Adams PD
    Methods Enzymol; 2020; 634():225-255. PubMed ID: 32093835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins.
    O'Dell WB; Bodenheimer AM; Meilleur F
    Arch Biochem Biophys; 2016 Jul; 602():48-60. PubMed ID: 26592456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct determination of the positions of the deuterium atoms of the bound water in -concanavalin A by neutron Laue crystallography.
    Habash J; Raftery J; Nuttall R; Price HJ; Wilkinson C; Kalb AJ; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 2000 May; 56(Pt 5):541-50. PubMed ID: 10771422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the neutron diffraction--H/D exchange technique to determine the conformational dynamics of trypsin.
    Kossiakoff AA
    Basic Life Sci; 1984; 27():281-304. PubMed ID: 6712567
    [No Abstract]   [Full Text] [Related]  

  • 15. Water structure in vitamin B12 coenzyme crystals. I. Analysis of the neutron and x-ray solvent densities.
    Savage H
    Biophys J; 1986 Nov; 50(5):947-65. PubMed ID: 3790696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron Laue diffraction studies of coenzyme cob(II)alamin.
    Langan P; Lehmann M; Wilkinson C; Jogl G; Kratky C
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):51-9. PubMed ID: 10089394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding water: molecular dynamics simulations of myoglobin.
    Gu W; Garcia AE; Schoenborn BP
    Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Dependent Structure of Methanol-Water Mixtures up to 1.2 GPa: Neutron Diffraction Experiments and Molecular Dynamics Simulations.
    Temleitner L; Hattori T; Abe J; Nakajima Y; Pusztai L
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33668744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II.
    Wlodawer A; Walter J; Huber R; Sjölin L
    J Mol Biol; 1984 Dec; 180(2):301-29. PubMed ID: 6210373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.