BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 9092478)

  • 1. Trafficking of matrix collagens through bone-resorbing osteoclasts.
    Nesbitt SA; Horton MA
    Science; 1997 Apr; 276(5310):266-9. PubMed ID: 9092478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of osteoclast bone resorption products by transcytosis.
    Salo J; Lehenkari P; Mulari M; Metsikkö K; Väänänen HK
    Science; 1997 Apr; 276(5310):270-3. PubMed ID: 9092479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular membrane trafficking in bone resorbing osteoclasts.
    Mulari M; Vääräniemi J; Väänänen HK
    Microsc Res Tech; 2003 Aug; 61(6):496-503. PubMed ID: 12879417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases.
    Everts V; Delaissé JM; Korper W; Niehof A; Vaes G; Beertsen W
    J Cell Physiol; 1992 Feb; 150(2):221-31. PubMed ID: 1734028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endocytic trafficking in actively resorbing osteoclasts.
    Stenbeck G; Horton MA
    J Cell Sci; 2004 Feb; 117(Pt 6):827-36. PubMed ID: 14762112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcracks and osteoclast resorption activity in vitro.
    Rumpler M; Würger T; Roschger P; Zwettler E; Peterlik H; Fratzl P; Klaushofer K
    Calcif Tissue Int; 2012 Mar; 90(3):230-8. PubMed ID: 22271249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix collagen of devitalized bone is resistant to osteoclastic bone resorption.
    Shimizu H; Sakamoto S; Sakamoto M
    Connect Tissue Res; 1989; 20(1-4):169-75. PubMed ID: 2612150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.
    Yovich S; Seydel U; Papadimitriou JM; Nicholson GC; Wood DJ; Zheng MH
    Histochem J; 1998 Apr; 30(4):267-73. PubMed ID: 9610818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts.
    Parikka V; Lehenkari P; Sassi ML; Halleen J; Risteli J; Härkönen P; Väänänen HK
    Endocrinology; 2001 Dec; 142(12):5371-8. PubMed ID: 11713237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts.
    Mulari MT; Nars M; Laitala-Leinonen T; Kaisto T; Metsikkö K; Sun Y; Väänänen HK
    Exp Cell Res; 2008 May; 314(8):1641-51. PubMed ID: 18387607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation.
    Valcourt U; Merle B; Gineyts E; Viguet-Carrin S; Delmas PD; Garnero P
    J Biol Chem; 2007 Feb; 282(8):5691-703. PubMed ID: 17142454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cell biology of osteoclast function.
    Väänänen HK; Zhao H; Mulari M; Halleen JM
    J Cell Sci; 2000 Feb; 113 ( Pt 3)():377-81. PubMed ID: 10639325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular membrane trafficking pathways in bone-resorbing osteoclasts revealed by cloning and subcellular localization studies of small GTP-binding rab proteins.
    Zhao H; Ettala O; Väänänen HK
    Biochem Biophys Res Commun; 2002 May; 293(3):1060-5. PubMed ID: 12051767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells.
    Coxon FP; Thompson K; Roelofs AJ; Ebetino FH; Rogers MJ
    Bone; 2008 May; 42(5):848-60. PubMed ID: 18325866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts.
    Vääräniemi J; Halleen JM; Kaarlonen K; Ylipahkala H; Alatalo SL; Andersson G; Kaija H; Vihko P; Väänänen HK
    J Bone Miner Res; 2004 Sep; 19(9):1432-40. PubMed ID: 15312243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts.
    Palokangas H; Mulari M; Väänänen HK
    J Cell Sci; 1997 Aug; 110 ( Pt 15)():1767-80. PubMed ID: 9264464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta 1 integrins and osteoclast function: involvement in collagen recognition and bone resorption.
    Helfrich MH; Nesbitt SA; Lakkakorpi PT; Barnes MJ; Bodary SC; Shankar G; Mason WT; Mendrick DL; Väänänen HK; Horton MA
    Bone; 1996 Oct; 19(4):317-28. PubMed ID: 8894137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior.
    Rumpler M; Würger T; Roschger P; Zwettler E; Sturmlechner I; Altmann P; Fratzl P; Rogers MJ; Klaushofer K
    Calcif Tissue Int; 2013 Dec; 93(6):526-39. PubMed ID: 24022329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity.
    Teti A; Marchisio PC; Zallone AZ
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C1-7. PubMed ID: 1858848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulation of small GTPase Rab7 impairs osteoclast polarization and bone resorption.
    Zhao H; Laitala-Leinonen T; Parikka V; Väänänen HK
    J Biol Chem; 2001 Oct; 276(42):39295-302. PubMed ID: 11514537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.