These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 9092478)

  • 21. Mechanism of osteoclast mediated bone resorption.
    Väänänen HK; Hentunen T; Lakkakorpi P; Parvinen EK; Sundqvist K; Tuukkanen J
    Ann Chir Gynaecol; 1988; 77(5-6):193-6. PubMed ID: 3076045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interferon gamma and calcitonin induce differential changes in cellular kinetics and morphology of osteoclasts in cultured neonatal mouse calvaria.
    Klaushofer K; Hörandner H; Hoffmann O; Czerwenka E; König U; Koller K; Peterlik M
    J Bone Miner Res; 1989 Aug; 4(4):585-606. PubMed ID: 2510468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural analysis of apatite-degrading capability of extended invasive podosomes in resorbing osteoclasts.
    Akisaka T; Yoshida A
    Micron; 2016 Sep; 88():37-47. PubMed ID: 27323283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoclast lineage and function.
    Väänänen HK; Laitala-Leinonen T
    Arch Biochem Biophys; 2008 May; 473(2):132-8. PubMed ID: 18424258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between calcium accumulation in osteoclast mitochondrial granules and bone resorption.
    Kawahara I; Koide M; Tadokoro O; Udagawa N; Nakamura H; Takahashi N; Ozawa H
    Bone; 2009 Nov; 45(5):980-6. PubMed ID: 19631304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dentin resorption mediated by odontoclasts in physiological root resorption of human deciduous teeth.
    Sasaki T; Motegi N; Suzuki H; Watanabe C; Tadokoro K; Yanagisawa T; Higashi S
    Am J Anat; 1988 Dec; 183(4):303-15. PubMed ID: 2851263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacological sequestration of intracellular cholesterol in late endosomes disrupts ruffled border formation in osteoclasts.
    Zhao H; Väänänen HK
    J Bone Miner Res; 2006 Mar; 21(3):456-65. PubMed ID: 16491294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolated osteoclasts resorb the organic and inorganic components of bone.
    Blair HC; Kahn AJ; Crouch EC; Jeffrey JJ; Teitelbaum SL
    J Cell Biol; 1986 Apr; 102(4):1164-72. PubMed ID: 3457013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The resorptive apparatus of osteoclasts supports lysosomotropism and increases potency of basic versus non-basic inhibitors of cathepsin K.
    Fuller K; Lindstrom E; Edlund M; Henderson I; Grabowska U; Szewczyk KA; Moss R; Samuelsson B; Chambers TJ
    Bone; 2010 May; 46(5):1400-7. PubMed ID: 20097319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking.
    Leung P; Pickarski M; Zhuo Y; Masarachia PJ; Duong LT
    Bone; 2011 Oct; 49(4):623-35. PubMed ID: 21718816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible role of direct Rac1-Rab7 interaction in ruffled border formation of osteoclasts.
    Sun Y; Büki KG; Ettala O; Vääräniemi JP; Väänänen HK
    J Biol Chem; 2005 Sep; 280(37):32356-61. PubMed ID: 16040606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanisms of bone resorption by the osteoclast.
    Baron R
    Anat Rec; 1989 Jun; 224(2):317-24. PubMed ID: 2549811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased synthesis and specific localization of a major lysosomal membrane sialoglycoprotein (LGP107) at the ruffled border membrane of active osteoclasts.
    Akamine A; Tsukuba T; Kimura R; Maeda K; Tanaka Y; Kato K; Yamamoto K
    Histochemistry; 1993 Aug; 100(2):101-8. PubMed ID: 8244761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochalasin D reduces osteoclastic bone resorption by inhibiting development of ruffled border-clear zone complex.
    Sasaki T; Debari K; Udagawa N
    Calcif Tissue Int; 1993 Sep; 53(3):217-21. PubMed ID: 8242476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in the ultrastructural assessment of osteoclastic resorptive functions.
    Sasaki T
    Microsc Res Tech; 1996 Feb; 33(2):182-91. PubMed ID: 8845517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcytosis of calcium from bone by osteoclast-like cells evidenced by direct visualization of calcium in cells.
    Yamaki M; Nakamura H; Takahashi N; Udagawa N; Ozawa H
    Arch Biochem Biophys; 2005 Aug; 440(1):10-7. PubMed ID: 15993377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of osteoprotegerin administration on osteoclast differentiation and trabecular bone structure in osteoprotegerin-deficient mice.
    Yamazaki H; Sasaki T
    J Electron Microsc (Tokyo); 2005 Oct; 54(5):467-77. PubMed ID: 16339792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases.
    Zhao H
    Traffic; 2012 Oct; 13(10):1307-14. PubMed ID: 22759194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption.
    Bozec L; de Groot J; Odlyha M; Nicholls B; Nesbitt S; Flanagan A; Horton M
    Ultramicroscopy; 2005 Nov; 105(1-4):79-89. PubMed ID: 16125320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.