These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9092662)

  • 1. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
    Gautheret D; Gutell RR
    Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of base-triples in RNA using comparative sequence analysis.
    Gautheret D; Damberger SH; Gutell RR
    J Mol Biol; 1995 Apr; 248(1):27-43. PubMed ID: 7537339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids.
    Walberer BJ; Cheng AC; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):767-80. PubMed ID: 12654262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Mukherjee S; Bansal M; Bhattacharyya D
    J Comput Aided Mol Des; 2006; 20(10-11):629-45. PubMed ID: 17124630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis.
    Réblová K; Šponer JE; Špačková N; Beššeová I; Šponer J
    J Phys Chem B; 2011 Dec; 115(47):13897-910. PubMed ID: 21999672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.
    Bhattacharyya D; Halder S; Basu S; Mukherjee D; Kumar P; Bansal M
    J Comput Aided Mol Des; 2017 Feb; 31(2):219-235. PubMed ID: 28102461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational features of the four successive non-Watson-Crick base pairs in RNA duplex.
    Fujii S; Tanaka Y; Uesugi S; Tanaka T; Sakata T; Hiroaki H
    Nucleic Acids Symp Ser; 1992; (27):63-4. PubMed ID: 1283916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
    Sloma MF; Mathews DH
    PLoS Comput Biol; 2017 Nov; 13(11):e1005827. PubMed ID: 29107980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity and geometry of a base triple in 16S rRNA determined by comparative sequence analysis and molecular modeling.
    Babin P; Dolan M; Wollenzien P; Gutell RR
    RNA; 1999 Nov; 5(11):1430-9. PubMed ID: 10580471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools for the automatic identification and classification of RNA base pairs.
    Yang H; Jossinet F; Leontis N; Chen L; Westbrook J; Berman H; Westhof E
    Nucleic Acids Res; 2003 Jul; 31(13):3450-60. PubMed ID: 12824344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New in silico approach to assessing RNA secondary structures with non-canonical base pairs.
    Rybarczyk A; Szostak N; Antczak M; Zok T; Popenda M; Adamiak R; Blazewicz J; Szachniuk M
    BMC Bioinformatics; 2015 Sep; 16(1):276. PubMed ID: 26329823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.
    Le SY; Pattabiraman N; Maizel JV
    Nucleic Acids Res; 1994 Sep; 22(19):3966-76. PubMed ID: 7937119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural landscape of base pairs containing post-transcriptional modifications in RNA.
    Seelam PP; Sharma P; Mitra A
    RNA; 2017 Jun; 23(6):847-859. PubMed ID: 28341704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA.
    Kim NK; Zhang Q; Zhou J; Theimer CA; Peterson RD; Feigon J
    J Mol Biol; 2008 Dec; 384(5):1249-61. PubMed ID: 18950640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Database of non-canonical base pairs found in known RNA structures.
    Nagaswamy U; Voss N; Zhang Z; Fox GE
    Nucleic Acids Res; 2000 Jan; 28(1):375-6. PubMed ID: 10592279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated de novo prediction of native-like RNA tertiary structures.
    Das R; Baker D
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14664-9. PubMed ID: 17726102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.