These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 9092675)

  • 41. Kinetic and calorimetric evidence for two distinct scaffolding protein binding populations within the bacteriophage P22 procapsid.
    Parker MH; Brouillette CG; Prevelige PE
    Biochemistry; 2001 Jul; 40(30):8962-70. PubMed ID: 11467958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly.
    Bazinet C; Villafane R; King J
    J Mol Biol; 1990 Dec; 216(3):701-16. PubMed ID: 2258936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacteriophage P22 capsid size determination: roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus.
    Suhanovsky MM; Teschke CM
    Virology; 2011 Sep; 417(2):418-29. PubMed ID: 21784500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein.
    Tuma R; Parker MH; Weigele P; Sampson L; Sun Y; Krishna NR; Casjens S; Thomas GJ; Prevelige PE
    J Mol Biol; 1998 Aug; 281(1):81-94. PubMed ID: 9680477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo.
    Parent KN; Ranaghan MJ; Teschke CM
    Mol Microbiol; 2004 Nov; 54(4):1036-50. PubMed ID: 15522085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The RNA-binding domain of bacteriophage P22 N protein is highly mutable, and a single mutation relaxes specificity toward lambda.
    Cocozaki AI; Ghattas IR; Smith CA
    J Bacteriol; 2008 Dec; 190(23):7699-708. PubMed ID: 18820025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site.
    Carey J; Lowary PT; Uhlenbeck OC
    Biochemistry; 1983 Sep; 22(20):4723-30. PubMed ID: 6626527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants.
    Teschke CM; Parent KN
    Virology; 2010 Jun; 401(2):119-30. PubMed ID: 20236676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of R17 coat protein with its RNA binding site for translational repression.
    Uhlenbeck OC; Carey J; Romaniuk PJ; Lowary PT; Beckett D
    J Biomol Struct Dyn; 1983 Oct; 1(2):539-52. PubMed ID: 6401118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions.
    Valegârd K; Murray JB; Stonehouse NJ; van den Worm S; Stockley PG; Liljas L
    J Mol Biol; 1997 Aug; 270(5):724-38. PubMed ID: 9245600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA binding site of R17 coat protein.
    Romaniuk PJ; Lowary P; Wu HN; Stormo G; Uhlenbeck OC
    Biochemistry; 1987 Mar; 26(6):1563-8. PubMed ID: 3297131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of viral capsid assembly by 1,1'-bi(4-anilinonaphthalene-5-sulfonic acid).
    Teschke CM; King J; Prevelige PE
    Biochemistry; 1993 Oct; 32(40):10658-65. PubMed ID: 8399211
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity.
    Teschke CM; King J
    Biochemistry; 1995 May; 34(20):6815-26. PubMed ID: 7756313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The energetic contributions of scaffolding and coat proteins to the assembly of bacteriophage procapsids.
    Zlotnick A; Suhanovsky MM; Teschke CM
    Virology; 2012 Jun; 428(1):64-9. PubMed ID: 22520942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The folded conformation of phage P22 coat protein is affected by amino acid substitutions that lead to a cold-sensitive phenotype.
    Fong DG; Doyle SM; Teschke CM
    Biochemistry; 1997 Apr; 36(13):3971-80. PubMed ID: 9092827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using circular permutation analysis to redefine the R17 coat protein binding site.
    Gott JM; Pan T; LeCuyer KA; Uhlenbeck OC
    Biochemistry; 1993 Dec; 32(49):13399-404. PubMed ID: 7504949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly.
    Greene B; King J
    J Biol Chem; 1999 Jun; 274(23):16141-6. PubMed ID: 10347166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein.
    Schneider D; Tuerk C; Gold L
    J Mol Biol; 1992 Dec; 228(3):862-9. PubMed ID: 1469719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids.
    Thuman-Commike PA; Greene B; Malinski JA; Burbea M; McGough A; Chiu W; Prevelige PE
    Biophys J; 1999 Jun; 76(6):3267-77. PubMed ID: 10354452
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22.
    RodrĂ­guez-Casado A; Thomas GJ
    Biochemistry; 2003 Apr; 42(12):3437-45. PubMed ID: 12653547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.