These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 9092807)
1. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers. Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807 [TBL] [Abstract][Full Text] [Related]
2. Study on the packing geometry, stoichiometry, and membrane interaction of three analogs related to a pore-forming small globular protein. Matsumoto E; Kiyota T; Lee S; Sugihara G; Yamashita S; Meno H; Aso Y; Sakamoto H; Ellerby HM Biopolymers; 2000-2001; 56(2):96-108. PubMed ID: 11592056 [TBL] [Abstract][Full Text] [Related]
3. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
4. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. Meijberg W; Booth PJ J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Kiyota T; Lee S; Sugihara G Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958 [TBL] [Abstract][Full Text] [Related]
7. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance. Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327 [TBL] [Abstract][Full Text] [Related]
8. Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. Shanmugavadivu B; Apell HJ; Meins T; Zeth K; Kleinschmidt JH J Mol Biol; 2007 Apr; 368(1):66-78. PubMed ID: 17336328 [TBL] [Abstract][Full Text] [Related]
9. Aggregation and porin-like channel activity of a beta sheet peptide. Thundimadathil J; Roeske RW; Jiang HY; Guo L Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403 [TBL] [Abstract][Full Text] [Related]
10. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
11. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers. Chung LA; Thompson TE Biochemistry; 1996 Sep; 35(35):11343-54. PubMed ID: 8784189 [TBL] [Abstract][Full Text] [Related]
12. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
13. Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy. Wray V; Kinder R; Federau T; Henklein P; Bechinger B; Schubert U Biochemistry; 1999 Apr; 38(16):5272-82. PubMed ID: 10213635 [TBL] [Abstract][Full Text] [Related]
14. Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel. Shinozaki K; Anzai K; Kirino Y; Lee S; Aoyagi H Biochem Biophys Res Commun; 1994 Jan; 198(2):445-50. PubMed ID: 8297354 [TBL] [Abstract][Full Text] [Related]
15. A leucine zipper-like sequence from the cytoplasmic tail of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers. Kliger Y; Shai Y Biochemistry; 1997 Apr; 36(17):5157-69. PubMed ID: 9136877 [TBL] [Abstract][Full Text] [Related]
17. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers. Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922 [TBL] [Abstract][Full Text] [Related]
18. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472 [TBL] [Abstract][Full Text] [Related]
19. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
20. Folding of apocytochrome c in lipid micelles: formation of alpha-helix precedes membrane insertion. Bryson EA; Rankin SE; Carey M; Watts A; Pinheiro TJ Biochemistry; 1999 Jul; 38(30):9758-67. PubMed ID: 10423256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]