These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. 3D MR angiography with ramp-shaped flip-angle distribution. Martos J; Nägele T; Klose U; Petersen D; Voigt K Eur Radiol; 1996; 6(4):489-93. PubMed ID: 8798030 [TBL] [Abstract][Full Text] [Related]
24. [Magnetic resonance angiography of the origin of the supraaortic trunks: the tridimensional time-of-flight with single volume technique]. Carriero A; Magarelli N; Baratto M; Aloia N; Pinto D; Scapati C; Bonomo L Radiol Med; 1996 Jun; 91(6):743-6. PubMed ID: 8830359 [TBL] [Abstract][Full Text] [Related]
25. Pulmonary time-of-flight MR angiography at 1.0 T: comparison between 2D and 3D tone acquisitions. Laissy JP; Assayag P; Henry-Feugeas MC; Tebboune D; Berger JF; Limot O; Falise B; Chillon S; Valere PE; Schouman-Claeys E Magn Reson Imaging; 1995; 13(7):949-57. PubMed ID: 8583873 [TBL] [Abstract][Full Text] [Related]
26. Breath-hold ultrafast three-dimensional gadolinium-enhanced MR angiography of the aorta and the renal and other visceral abdominal arteries. Holland GA; Dougherty L; Carpenter JP; Golden MA; Gilfeather M; Slossman F; Schnall MD; Axel L AJR Am J Roentgenol; 1996 Apr; 166(4):971-81. PubMed ID: 8610584 [TBL] [Abstract][Full Text] [Related]
27. Electrocardiograph-triggered two-dimensional time-of-flight versus optimized contrast-enhanced three-dimensional MR angiography of the peripheral arteries. Vosshenrich R; Kopka L; Castillo E; Böttcher U; Graessner J; Grabbe E Magn Reson Imaging; 1998 Oct; 16(8):887-92. PubMed ID: 9814770 [TBL] [Abstract][Full Text] [Related]
28. Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains. Li W; Xu F; Schär M; Liu J; Shin T; Zhao Y; van Zijl PCM; Wasserman BA; Qiao Y; Qin Q Magn Reson Med; 2018 Apr; 79(4):2014-2023. PubMed ID: 28799210 [TBL] [Abstract][Full Text] [Related]
29. Preoperative evaluation of the entire hepatic vasculature in living liver donors with use of contrast-enhanced MR angiography and true fast imaging with steady-state precession. Carr JC; Nemcek AA; Abecassis M; Blei A; Clarke L; Pereles FS; McCarthy R; Finn JP J Vasc Interv Radiol; 2003 Apr; 14(4):441-9. PubMed ID: 12682200 [TBL] [Abstract][Full Text] [Related]
30. Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Atkinson D; Brant-Zawadzki M; Gillan G; Purdy D; Laub G Radiology; 1994 Mar; 190(3):890-4. PubMed ID: 8115646 [TBL] [Abstract][Full Text] [Related]
31. Ultrasmall superparamagnetic iron oxide particles (AMI 227) as a blood pool contrast agent for MR angiography: experimental study in rabbits. Loubeyre P; Zhao S; Canet E; Abidi H; Benderbous S; Revel D J Magn Reson Imaging; 1997; 7(6):958-62. PubMed ID: 9400837 [TBL] [Abstract][Full Text] [Related]
32. Visualization of external carotid artery and its branches: non-contrast-enhanced MR angiography using balanced steady-state free-precession sequence and a time-spatial labeling inversion pulse. Satogami N; Okada T; Koyama T; Gotoh K; Kamae T; Togashi K J Magn Reson Imaging; 2009 Sep; 30(3):678-83. PubMed ID: 19711418 [TBL] [Abstract][Full Text] [Related]
34. Improved visualization of intracranial vessels by gradient moment nulling in hybrid of opposite-contrast magnetic resonance angiography (HOP MRA). Azuma T; Kodama T; Yano T; Suzuki M; Kimura T; Tamaribuchi Y Magn Reson Med Sci; 2010; 9(3):159-65. PubMed ID: 20885090 [TBL] [Abstract][Full Text] [Related]
35. Contrast-enhanced MR angiography: the effects of k-space truncation on luminal representation in a carotid artery phantom model. Melhem ER; Serfaty JM; Jones L; Itoh R; Kuszyk BS; Martin JB; Gailloud P; Murphy KP; Rufenacht DA AJNR Am J Neuroradiol; 2000; 21(6):1028-31. PubMed ID: 10871007 [TBL] [Abstract][Full Text] [Related]
36. [Clinical implication of parameter-optimized 3D-FISP MR angiography (MRA) in children with aortic coarctation: comparison with catheter angiography]. Kramer U; Greil G; Dammann F; Schick F; Miller S; Fenchel M; Sieverding L; Claussen CD Rofo; 2004 Oct; 176(10):1458-65. PubMed ID: 15383978 [TBL] [Abstract][Full Text] [Related]
37. Optimization of three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries. Harada K; Honmou O; Odawara Y; Bando M; Houkin K Neurol Med Chir (Tokyo); 2006 Nov; 46(11):523-8; discussion 528. PubMed ID: 17124366 [TBL] [Abstract][Full Text] [Related]
38. Gadolinium-enhanced 3D time-of-flight MR angiography. Experimental and clinical evaluation. Yano T; Kodama T; Suzuki Y; Watanabe K Acta Radiol; 1997 Jan; 38(1):47-54. PubMed ID: 9059401 [TBL] [Abstract][Full Text] [Related]
39. Pulsatile flow artifacts in two-dimensional time-of-flight MR angiography: initial studies in elastic models of human carotid arteries. Buxton RB; Kerber CW; Frank LR J Magn Reson Imaging; 1993; 3(4):625-36. PubMed ID: 8347956 [TBL] [Abstract][Full Text] [Related]
40. [Determination of optimal technical factors for the single breath-hold pulmonary MR angiography and its clinical applications]. Watanabe F Nihon Igaku Hoshasen Gakkai Zasshi; 1996 Jun; 56(7):507-14. PubMed ID: 8692668 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]