These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9093441)

  • 1. Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats.
    Seki J; Sasaki Y; Oyama T; Yamamoto J
    Biorheology; 1996; 33(6):463-70. PubMed ID: 9093441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intracranial pressure on the pial microcirculation in rats studied by a fiber-optic laser-Doppler anemometer microscope.
    Seki J; Sasaki Y; Oyama T; Yamamoto J
    Front Med Biol Eng; 1999; 9(2):113-21. PubMed ID: 10450498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-optic laser-Doppler anemometer microscope developed for the measurement of microvascular red cell velocity.
    Seki J
    Microvasc Res; 1990 Nov; 40(3):302-16. PubMed ID: 2150686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximal flow pulsation in the pial arterioles of rats at increased intracranial pressure.
    Seki J; Sasaki Y; Oyama T; Yamamoto J
    Front Med Biol Eng; 2000; 10(1):59-66. PubMed ID: 10898476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity profiles in the rat cerebral microvessels measured by optical coherence tomography.
    Seki J; Satomura Y; Ooi Y; Yanagida T; Seiyama A
    Clin Hemorheol Microcirc; 2006; 34(1-2):233-9. PubMed ID: 16543642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow pulsation and network structure in mesenteric microvasculature of rats.
    Seki J
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H811-21. PubMed ID: 8141382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity pulse advances pressure pulse by close to 45 degrees in the rat pial arterioles.
    Seki J; Satomura Y; Ooi Y
    Biorheology; 2004; 41(1):45-52. PubMed ID: 14967889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of NO-donors on thrombus formation and microcirculation in cerebral vessels of the rat.
    Sasaki Y; Seki J; Giddings JC; Yamamoto J
    Thromb Haemost; 1996 Jul; 76(1):111-7. PubMed ID: 8819262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative blood velocity measurement in individual microvessels using the self-mixing effect in a fiber-coupled helium-neon laser.
    Ren T; Nuttall AL; Miller JM
    Microvasc Res; 1995 Mar; 49(2):233-45. PubMed ID: 7603358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of a velocity field in microvessels using a high resolution PIV technique.
    Sugii Y; Nishio S; Okamoto K
    Ann N Y Acad Sci; 2002 Oct; 972():331-6. PubMed ID: 12496037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Doppler measurements of concentration and velocity of moving blood cells in rat cerebral circulation.
    Barfod C; Akgören N; Fabricius M; Dirnagl U; Lauritzen M
    Acta Physiol Scand; 1997 Jun; 160(2):123-32. PubMed ID: 9208038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-free plasma layer in cerebral microvessels.
    Yamaguchi S; Yamakawa T; Niimi H
    Biorheology; 1992; 29(2-3):251-60. PubMed ID: 1298443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fringe mode transmittance laser Doppler microscope anemometer: its adaptation for measurement in the microcirculation.
    Einav S; Berman HJ
    J Biomed Eng; 1988 Oct; 10(5):393-9. PubMed ID: 2976862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional recruitment of red blood cells to rat brain microcirculation accompanying increased neuronal activity in cerebellar cortex.
    Akgören N; Lauritzen M
    Neuroreport; 1999 Nov; 10(16):3257-63. PubMed ID: 10599830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral thrombosis and microcirculation of the rat during the oestrous cycle and after ovariectomy.
    Ono H; Sasaki Y; Bamba E; Seki J; Giddings JC; Yamamoto J
    Clin Exp Pharmacol Physiol; 2002; 29(1-2):73-8. PubMed ID: 11906462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo rat closed spinal window for spinal microcirculation: observation of pial vessels, leukocyte adhesion, and red blood cell velocity.
    Ishikawa M; Sekizuka E; Sato S; Yamaguchi N; Shimizu K; Kobayashi K; Bertalanffy H; Kawase T
    Neurosurgery; 1999 Jan; 44(1):156-61; discussion 161-2. PubMed ID: 9894976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of pial vessel diameter and regional cerebral blood flow to CO2 during midazolam administration in cats.
    Kumano H; Furuya H; Yomosa H; Nagahata T; Okuda T; Sakaki T
    Acta Anaesthesiol Scand; 1994 Oct; 38(7):729-33. PubMed ID: 7839786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in red blood cell behavior during cerebral blood flow increase in the rat somatosensory cortex: a study of laser-Doppler flowmetry.
    Matsuura T; Kanno I
    Jpn J Physiol; 2001 Dec; 51(6):703-8. PubMed ID: 11846961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo effects of dexmedetomidine on laser-Doppler flow and pial arteriolar diameter.
    Ganjoo P; Farber NE; Hudetz A; Smith JJ; Samso E; Kampine JP; Schmeling WT
    Anesthesiology; 1998 Feb; 88(2):429-39. PubMed ID: 9477064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.