BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 909462)

  • 1. [Possibility of using light of different wavelengths for growing Chromatium vinosum in heterotrophic conditions].
    Osnitskaia LK; Chudina VI
    Mikrobiologiia; 1977; 46(4):612-8. PubMed ID: 909462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Photosynthetic development of purple sulfur bacteria during illumination with green light].
    Osnitskaia LK; Chudina VI
    Mikrobiologiia; 1977; 46(1):55-61. PubMed ID: 870803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Two-photon excitation fluorescence spectrum of the light-harvesting complex LH2 from Chromatium minutissimum within 650-745 nm range is determined by two-photon absorption of bacteriochlorophyll rather than of carotenoids].
    Krikunova MA; Leupold D; Rini M; Voigt B; Moskalenko AA; Toropygina OA; Razzhivin AP
    Biofizika; 2002; 47(6):1015-20. PubMed ID: 12500564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of spectral composition of light and its intensity on the growth of photosynthesizing purple sulfur bacterium Chromatium vinosum].
    Osnitskaia LK; Chudina VI
    Mikrobiologiia; 1965; 34(1):19-23. PubMed ID: 5860422
    [No Abstract]   [Full Text] [Related]  

  • 5. 13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in Chromatium.
    Oh-hama T; Seto H; Miyachi S
    Arch Biochem Biophys; 1986 Apr; 246(1):192-8. PubMed ID: 3963821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-Induced destruction of light-harvesting complexes from purple bacterium Chromatium minutissimum.
    Solov'ev AA; Makhneva ZK; Erokhin YU
    Membr Cell Biol; 2001; 14(4):463-74. PubMed ID: 11497101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Growth of phototrophic bacterium Rhodobacter sphaeroides and formation of carotenoids on mineral water "Dzhermuk"].
    Paronian AKh
    Mikrobiol Z; 2002; 64(2):28-35. PubMed ID: 12190021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin system of the photosynthetic anaerobe Chromatium vinosum.
    Johnson TC; Crawford NA; Buchanan BB
    J Bacteriol; 1984 Jun; 158(3):1061-9. PubMed ID: 6373736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Growth of purple sulfur bacteria in the dark in anaerobic conditions].
    Krasil'nikova EN; Pedan LV; Kondrat'eva EN
    Mikrobiologiia; 1976 JUL-AUG; 45(4):581-3. PubMed ID: 979675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of light intensity on the content of bacteriochlorophyll and on the growth of phototrophic marine sulfur bacteria].
    Matheron R; Baulaigue R
    Can J Microbiol; 1980 Apr; 26(4):464-7. PubMed ID: 7378941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acid-soluble nucleotides of the phototrophic bacterium Rhodospirillum rubrum during growth in light and in darkness].
    Shadi A; Mansurova SE; Cherniad'ev II; Kulaev IS
    Mikrobiologiia; 1975; 44(2):206-9. PubMed ID: 818480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral characteristics of electroretinography in congenital red-green color blindness.
    Uji Y
    Jpn J Ophthalmol; 1987; 31(1):61-80. PubMed ID: 3498068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Concentration of polyvalent metals following a change in the metabolism of Chromatium vinosum].
    Udel'nova TM; Chudina VI; Osnitskaia LK; Boĭchenko EA; Chernogorova SM
    Mikrobiologiia; 1977; 46(3):418-22. PubMed ID: 895552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria.
    Frigaard NU; Bryant DA
    Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biochemical changes in cells of Chromatium minutissimum under photoautotrophic and photoheterotrophic conditions of growth].
    Zaĭtseva GN; Gulikova OM; Kondrat'eva EN
    Mikrobiologiia; 1965; 34(4):577-83. PubMed ID: 5871130
    [No Abstract]   [Full Text] [Related]  

  • 17. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production.
    Aklujkar M; Prince RC; Beatty JT
    Arch Biochem Biophys; 2005 May; 437(2):186-98. PubMed ID: 15850558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic characteristics of purple sulfur bacterium grown under different light intensities.
    Takahashi M; Shiokawa K; Ichimura S
    Can J Microbiol; 1972 Dec; 18(12):1825-8. PubMed ID: 4649738
    [No Abstract]   [Full Text] [Related]  

  • 19. [Bacteriochlorophyll fluorescence changes related to the bacteriopheophytin photoreduction in the chromatophores of purple sulfur bacteria].
    Klimov VV; Shuvalov VA; Krakhmaleva IN; Karapetian NV; Krasiovskiĭ AA
    Biokhimiia; 1976 Aug; 41(8):1435-41. PubMed ID: 1024595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis.
    Fukui M; Yoshioka M; Satomura K; Nakanishi H; Nagayama M
    J Periodontal Res; 2008 Apr; 43(2):174-8. PubMed ID: 18302619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.