These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 9094744)

  • 1. Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme.
    Hayward S; Kitao A; Berendsen HJ
    Proteins; 1997 Mar; 27(3):425-37. PubMed ID: 9094744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme.
    Horiuchi T; Go N
    Proteins; 1991; 10(2):106-16. PubMed ID: 1896424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of domain motions in bacteriophage T4 lysozyme.
    Arnold GE; Manchester JI; Townsend BD; Ornstein RL
    J Biomol Struct Dyn; 1994 Oct; 12(2):457-74. PubMed ID: 7702780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme.
    Brooks B; Karplus M
    Proc Natl Acad Sci U S A; 1985 Aug; 82(15):4995-9. PubMed ID: 3860838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data.
    de Groot BL; Hayward S; van Aalten DM; Amadei A; Berendsen HJ
    Proteins; 1998 May; 31(2):116-27. PubMed ID: 9593186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme.
    Hayward S; Berendsen HJ
    Proteins; 1998 Feb; 30(2):144-54. PubMed ID: 9489922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the interdomain motions in hen lysozyme using residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations.
    De Simone A; Montalvao RW; Dobson CM; Vendruscolo M
    Biochemistry; 2013 Sep; 52(37):6480-6. PubMed ID: 23941501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal mode analysis of human lysozyme: study of the relative motion of the two domains and characterization of the harmonic motion.
    Gibrat JF; Go N
    Proteins; 1990; 8(3):258-79. PubMed ID: 2281087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of peptides and proteins with amplified collective motions.
    Zhang Z; Shi Y; Liu H
    Biophys J; 2003 Jun; 84(6):3583-93. PubMed ID: 12770868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.
    Naritomi Y; Fuchigami S
    J Chem Phys; 2011 Feb; 134(6):065101. PubMed ID: 21322734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy landscape of a native protein: jumping-among-minima model.
    Kitao A; Hayward S; Go N
    Proteins; 1998 Dec; 33(4):496-517. PubMed ID: 9849935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-controlled protein dynamics observed with neutron spin echo measurements.
    Wang SC; Mirarefi P; Faraone A; Lee CT
    Biochemistry; 2011 Sep; 50(38):8150-62. PubMed ID: 21809812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of domain motions by approximate normal mode calculations.
    Hinsen K
    Proteins; 1998 Nov; 33(3):417-29. PubMed ID: 9829700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.
    Karasawa N; Mitsutake A; Takano H
    Phys Rev E; 2017 Dec; 96(6-1):062408. PubMed ID: 29347325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of interdomain interactions on the intradomain motions in yeast phosphoglycerate kinase: a molecular dynamics study.
    Balog E; Laberge M; Fidy J
    Biophys J; 2007 Mar; 92(5):1709-16. PubMed ID: 17158564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics simulation of bacteriophage T4 lysozyme.
    Arnold GE; Ornstein RL
    Protein Eng; 1992 Oct; 5(7):703-14. PubMed ID: 1480623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions.
    Vinh NQ; Allen SJ; Plaxco KW
    J Am Chem Soc; 2011 Jun; 133(23):8942-7. PubMed ID: 21542634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated intramolecular motions and diffuse X-ray scattering in lysozyme.
    Faure P; Micu A; Pérahia D; Doucet J; Smith JC; Benoit JP
    Nat Struct Biol; 1994 Feb; 1(2):124-8. PubMed ID: 7656016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.