BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9096216)

  • 1. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane.
    Krebs MP; Li W; Halambeck TP
    J Mol Biol; 1997 Mar; 267(1):172-83. PubMed ID: 9096216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular dichroism and cross-linking studies of bacteriorhodopsin mutants.
    Karnaukhova E; Schey KL; Crouch RK
    Amino Acids; 2006 Feb; 30(1):17-23. PubMed ID: 16477391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the interhelical loops and carboxyl terminus of bacteriorhodopsin by X-ray diffraction using site-directed heavy-atom labeling.
    Behrens W; Alexiev U; Mollaaghababa R; Khorana HG; Heyn MP
    Biochemistry; 1998 Jul; 37(29):10411-9. PubMed ID: 9671510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content.
    Rhinow D; Hampp N
    J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy.
    Baumann RP; Schranz M; Hampp N
    Phys Chem Chem Phys; 2010 May; 12(17):4329-35. PubMed ID: 20407703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
    Rhinow D; Chizhik I; Baumann RP; Noll F; Hampp N
    J Phys Chem B; 2010 Nov; 114(46):15424-8. PubMed ID: 21033713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein.
    Turner GJ; Miercke LJ; Mitra AK; Stroud RM; Betlach MC; Winter-Vann A
    Protein Expr Purif; 1999 Nov; 17(2):324-38. PubMed ID: 10545282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
    Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N
    J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response.
    Li R; Cui X; Hu W; Lu Z; Li CM
    J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs.
    Bayburt TH; Grinkova YV; Sligar SG
    Arch Biochem Biophys; 2006 Jun; 450(2):215-22. PubMed ID: 16620766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR.
    Saitô H; Yamaguchi S; Okuda H; Shiraishi A; Tuzi S
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):5-14. PubMed ID: 14698378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of the two-dimensional lattice of bacteriorhodopsin reconstituted in partially fluorinated phosphatidylcholine bilayers.
    Takahashi H; Yoshino M; Morita K; Takagi T; Yokoyama Y; Kikukawa T; Amii H; Kanamori T; Sonoyama M
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):631-642. PubMed ID: 30582916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic surface structures of bacteriorhodopsin modified by site-directed mutations and cation binding as revealed by 13C NMR.
    Yonebayashi K; Yamaguchi S; Tuzi S; Saitô H
    Eur Biophys J; 2003 Mar; 32(1):1-11. PubMed ID: 12632201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching of bacteriorhodopsin solubilized with triton X-100.
    Sasaki T; Sonoyama M; Demura M; Mitaku S
    Photochem Photobiol; 2005; 81(5):1131-7. PubMed ID: 15934791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.