BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 9096219)

  • 41. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomic environment energies in proteins defined from statistics of accessible and contact surface areas.
    Delarue M; Koehl P
    J Mol Biol; 1995 Jun; 249(3):675-90. PubMed ID: 7783220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The SAAP force field. A simple approach to a new all-atom protein force field by using single amino acid potential (SAAP) functions in various solvents.
    Iwaoka M; Tomoda S
    J Comput Chem; 2003 Jul; 24(10):1192-200. PubMed ID: 12820126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining evolutionary and structural information for local protein structure prediction.
    Pei J; Grishin NV
    Proteins; 2004 Sep; 56(4):782-94. PubMed ID: 15281130
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Threading a database of protein cores.
    Madej T; Gibrat JF; Bryant SH
    Proteins; 1995 Nov; 23(3):356-69. PubMed ID: 8710828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales.
    Muñoz V; Serrano L
    Proteins; 1994 Dec; 20(4):301-11. PubMed ID: 7731949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new approach to protein fold recognition.
    Jones DT; Taylor WR; Thornton JM
    Nature; 1992 Jul; 358(6381):86-9. PubMed ID: 1614539
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of threading specificity and accuracy.
    Bryant SH
    Proteins; 1996 Oct; 26(2):172-85. PubMed ID: 8916225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading.
    Miyazawa S; Jernigan RL
    J Mol Biol; 1996 Mar; 256(3):623-44. PubMed ID: 8604144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space.
    Chou KC
    Proteins; 1995 Apr; 21(4):319-44. PubMed ID: 7567954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reconstruction of protein conformations from estimated positions of the C alpha coordinates.
    Payne PW
    Protein Sci; 1993 Mar; 2(3):315-24. PubMed ID: 8453371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. All-atom ab initio native structure prediction of a mixed fold (1FME): a comparison of structural and folding characteristics of various beta beta alpha miniproteins.
    Kim E; Jang S; Pak Y
    J Chem Phys; 2009 Nov; 131(19):195102. PubMed ID: 19929079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distance-dependent atomic knowledge-based force in protein fold recognition.
    Mirzaie M; Sadeghi M
    Proteins; 2012 Mar; 80(3):683-90. PubMed ID: 22231226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation performance of substitution matrices, based on contacts between residue terminal groups.
    Vishnepolsky B; Managadze G; Grigolava M; Pirtskhalava M
    J Biomol Struct Dyn; 2012; 30(2):180-90. PubMed ID: 22702729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new approach to protein fold recognition based on Delaunay tessellation of protein structure.
    Zheng W; Cho SJ; Vaisman II; Tropsha A
    Pac Symp Biocomput; 1997; ():486-97. PubMed ID: 9390317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Protein structure prediction from analogy. II. Testing of substitution matrices and pseudo-potentials used to align protein sequences with folds].
    Lobanov MIu; Fil'kenshteĭn AV
    Mol Biol (Mosk); 2009; 43(4):733-40. PubMed ID: 19807037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Are knowledge-based potentials derived from protein structure sets discriminative with respect to amino acid types?
    Sunyaev SR; Eisenhaber F; Argos P; Kuznetsov EN; Tumanyan VG
    Proteins; 1998 May; 31(3):225-46. PubMed ID: 9593195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force.
    Hendlich M; Lackner P; Weitckus S; Floeckner H; Froschauer R; Gottsbacher K; Casari G; Sippl MJ
    J Mol Biol; 1990 Nov; 216(1):167-80. PubMed ID: 2121999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.