These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 9096219)

  • 61. Statistical potentials extracted from protein structures: how accurate are they?
    Thomas PD; Dill KA
    J Mol Biol; 1996 Mar; 257(2):457-69. PubMed ID: 8609636
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The three-dimensional profile method using residue preference as a continuous function of residue environment.
    Zhang KY; Eisenberg D
    Protein Sci; 1994 Apr; 3(4):687-95. PubMed ID: 8003986
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An efficient computational method for globally optimal threading.
    Xu Y; Xu D; Uberbacher EC
    J Comput Biol; 1998; 5(3):597-614. PubMed ID: 9773353
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Perceptron learning of pairwise contact energies for proteins incorporating the amino acid environment.
    Heo M; Kim S; Moon EJ; Cheon M; Chung K; Chang I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011906. PubMed ID: 16090000
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Similarities and differences between nonhomologous proteins with similar folds: evaluation of threading strategies.
    Zhang B; Jaroszewski L; Rychlewski L; Godzik A
    Fold Des; 1997; 2(5):307-17. PubMed ID: 9377714
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition.
    Mirzaie M; Sadeghi M
    Proteins; 2014 Mar; 82(3):415-23. PubMed ID: 24038726
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The directional atomic solvation energy: an atom-based potential for the assignment of protein sequences to known folds.
    Mallick P; Weiss R; Eisenberg D
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16041-6. PubMed ID: 12461172
    [TBL] [Abstract][Full Text] [Related]  

  • 68. SIRIUS. An automated method for the analysis of the preferred packing arrangements between protein groups.
    Singh J; Thornton JM
    J Mol Biol; 1990 Feb; 211(3):595-615. PubMed ID: 2308168
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Orientational potentials extracted from protein structures improve native fold recognition.
    Buchete NV; Straub JE; Thirumalai D
    Protein Sci; 2004 Apr; 13(4):862-74. PubMed ID: 15044723
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A simple probabilistic model of multibody interactions in proteins.
    Johansson KE; Hamelryck T
    Proteins; 2013 Aug; 81(8):1340-50. PubMed ID: 23468247
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identifying sequence-structure pairs undetected by sequence alignments.
    Miyazawa S; Jernigan RL
    Protein Eng; 2000 Jul; 13(7):459-75. PubMed ID: 10906342
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A pairwise residue contact area-based mean force potential for discrimination of native protein structure.
    Arab S; Sadeghi M; Eslahchi C; Pezeshk H; Sheari A
    BMC Bioinformatics; 2010 Jan; 11():16. PubMed ID: 20064218
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field.
    Kozłowska U; Maisuradze GG; Liwo A; Scheraga HA
    J Comput Chem; 2010 Apr; 31(6):1154-67. PubMed ID: 20017135
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel knowledge-based mean force potential at the profile level.
    Dong Q; Wang X; Lin L
    BMC Bioinformatics; 2006 Jun; 7():324. PubMed ID: 16803615
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Distance dependency and minimum amino acid alphabets for decoy scoring potentials.
    Pape S; Hoffgaard F; Dür M; Hamacher K
    J Comput Chem; 2013 Jan; 34(1):10-20. PubMed ID: 22941794
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Physicochemical evaluation of protein folds predicted by threading.
    Kinjo AR; Kidera A; Nakamura H; Nishikawa K
    Eur Biophys J; 2001; 30(1):1-10. PubMed ID: 11372527
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pairwise contact energy statistical potentials can help to find probability of point mutations.
    Saravanan KM; Suvaithenamudhan S; Parthasarathy S; Selvaraj S
    Proteins; 2017 Jan; 85(1):54-64. PubMed ID: 27761949
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The inverse protein folding problem: self consistent mean field optimisation of a structure specific mutation matrix.
    Delarue M; Koehl P
    Pac Symp Biocomput; 1997; ():109-21. PubMed ID: 9390284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A distance- and orientation-dependent energy function of amino acid key blocks.
    Chen L; He J
    Biopolymers; 2014 Jun; 101(6):681-92. PubMed ID: 24222511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.