These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 9096242)
21. Endothelium-dependent, nitric oxide-mediated inhibition of angiotensin II-induced contractions in rabbit aorta. Zhang J; Van Meel JC; Pfaffendorf M; Zhang J; Van Zwieten PA Eur J Pharmacol; 1994 Sep; 262(3):247-53. PubMed ID: 7813589 [TBL] [Abstract][Full Text] [Related]
22. Role of nitric oxide in hyporeactivity to noradrenaline of isolated aortic rings in portal hypertensive rats. Michielsen PP; Boeckxstaens GE; Sys SU; Herman AG; Pelckmans PA Eur J Pharmacol; 1995 Jan; 273(1-2):167-74. PubMed ID: 7537679 [TBL] [Abstract][Full Text] [Related]
23. L-arginine induces relaxation of rat aorta possibly through non-endothelial nitric oxide formation. Moritoki H; Ueda H; Yamamoto T; Hisayama T; Takeuchi S Br J Pharmacol; 1991 Apr; 102(4):841-6. PubMed ID: 1649658 [TBL] [Abstract][Full Text] [Related]
24. Effects of aminoguanidine and N(omega)-nitro-L-arginine methyl ester on vascular hyporeactivity induced by endotoxaemia. Ismailoglu UB; Pekiner C; Yorganci K; Sahin-Erdemli I Eur J Surg; 2001 Nov; 167(11):803-9. PubMed ID: 11848232 [TBL] [Abstract][Full Text] [Related]
25. Time-dependent reduction of acetylcholine-induced relaxation in aortic rings of cholestatic rats. Rastegar H; Jorjani M; Roushanzamir F; Ahmadiani A; Namiranian K; Dehpour AR Pharmacol Res; 2001 Dec; 44(6):519-25. PubMed ID: 11735360 [TBL] [Abstract][Full Text] [Related]
26. Endothelium-dependent relaxation to acetylcholine in the rabbit basilar artery: importance of membrane hyperpolarization. Rand VE; Garland CJ Br J Pharmacol; 1992 May; 106(1):143-50. PubMed ID: 1380379 [TBL] [Abstract][Full Text] [Related]
27. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms. Zygmunt PM; Ryman T; Högestätt ED Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323 [TBL] [Abstract][Full Text] [Related]
28. Nitric oxide mediated endothelium-dependent relaxation induced by glibenclamide in rat isolated aorta. Chan W; Yao X; Ko W; Huang Y Cardiovasc Res; 2000 Apr; 46(1):180-7. PubMed ID: 10727666 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of inhibitory action of ethanol on endothelium-dependent relaxation in rat aorta. Hatake K; Wakabayashi I; Hishida S Eur J Pharmacol; 1993 Jul; 238(2-3):441-4. PubMed ID: 8405115 [TBL] [Abstract][Full Text] [Related]
30. Effects of nesfatin-1 on atrial contractility and thoracic aorta reactivity in male rats. Barutcigil A; Tasatargil A Clin Exp Hypertens; 2018; 40(5):414-420. PubMed ID: 29027818 [TBL] [Abstract][Full Text] [Related]
31. Acetylcholine-induced relaxation of rat aorta is greatest during estrus in the sexual cycle. Honda H; Ishihara H; Takei M; Kogo H Jpn J Pharmacol; 1997 May; 74(1):113-5. PubMed ID: 9195307 [TBL] [Abstract][Full Text] [Related]
32. Relaxation of rat thoracic aorta induced by the Ca(2+)-ATPase inhibitor, cyclopiazonic acid, possibly through nitric oxide formation. Moritoki H; Hisayama T; Takeuchi S; Kondoh W; Imagawa M Br J Pharmacol; 1994 Mar; 111(3):655-62. PubMed ID: 7517325 [TBL] [Abstract][Full Text] [Related]
33. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Zembowicz A; Hatchett RJ; Jakubowski AM; Gryglewski RJ Br J Pharmacol; 1993 Sep; 110(1):151-8. PubMed ID: 7693274 [TBL] [Abstract][Full Text] [Related]
34. Relaxation of vascular smooth muscle by cicletanine in aged wistar aorta under stress conditions: importance of nitric oxide. Chamiot-Clerc P; Choukri N; Legrand M; Droy-Lefaix MT; Safar ME; Renaud JF Am J Hypertens; 2000 Feb; 13(2):208-13. PubMed ID: 10701822 [TBL] [Abstract][Full Text] [Related]
35. A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Pi J; Horiguchi S; Sun Y; Nikaido M; Shimojo N; Hayashi T; Yamauchi H; Itoh K; Yamamoto M; Sun G; Waalkes MP; Kumagai Y Free Radic Biol Med; 2003 Jul; 35(1):102-13. PubMed ID: 12826260 [TBL] [Abstract][Full Text] [Related]
36. Anti-lipid deposition effect of HMG-CoA reductase inhibitor, pitavastatin, in a rat model of hypertension and hypercholesterolemia. Kumai T; Oonuma S; Matsumoto N; Takeba Y; Taniguchi R; Kamio K; Miyazu O; Koitabashi Y; Sekine S; Tadokoro M; Kobayashi S Life Sci; 2004 Mar; 74(17):2129-42. PubMed ID: 14969717 [TBL] [Abstract][Full Text] [Related]
37. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779 [TBL] [Abstract][Full Text] [Related]
38. Presence of excess tetrahydrobiopterin during nitric oxide production from inducible nitric oxide synthase in LPS-treated rat aorta. Shimizu S; Ishii M; Kawakami Y; Kiuchi Y; Momose K; Yamamoto T Life Sci; 1999; 65(26):2769-79. PubMed ID: 10622266 [TBL] [Abstract][Full Text] [Related]
39. Acute intravenous injection and short-term oral administration of N(G) -nitro-L-arginine methyl ester to the rat provoke increased pressor responses to agonists and hypertension, but not inhibition of acetylcholine-induced hypotensive responses. López RM; Pérez T; Castillo C; Castillo MC; Castillo EF Fundam Clin Pharmacol; 2011 Jun; 25(3):333-42. PubMed ID: 20608990 [TBL] [Abstract][Full Text] [Related]