BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9096409)

  • 21. Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids.
    Ashique AM; Atake OJ; Ovens K; Guo R; Pratt IV; Detrich HW; Cooper DML; Desvignes T; Postlethwait JH; Eames BF
    J Anat; 2022 Jan; 240(1):34-49. PubMed ID: 34423431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The loss of hemoglobin and myoglobin does not minimize oxidative stress in Antarctic icefishes.
    O'Brien KM; Crockett EL; Philip J; Oldham CA; Hoffman M; Kuhn DE; Barry R; McLaughlin J
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic costs of protein synthesis do not differ between red- and white-blooded Antarctic notothenioid fishes.
    Lewis JM; Grove TJ; O'Brien KM
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Sep; 187():177-83. PubMed ID: 26051614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature's natural knockouts.
    Egginton S; Axelsson M; Crockett EL; O'Brien KM; Farrell AP
    Conserv Physiol; 2019; 7(1):coz049. PubMed ID: 31620287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tale of two genes: divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless Antarctic icefishes.
    Bilyk KT; Zhuang X; Murphy KR; Cheng CC
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30765469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes.
    O'Brien KM; Sidell BD
    J Exp Biol; 2000 Apr; 203(Pt 8):1287-97. PubMed ID: 10729278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish.
    Desvignes T; Detrich HW; Postlethwait JH
    Mar Genomics; 2016 Dec; 30():27-34. PubMed ID: 27189439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes.
    Near TJ; Parker SK; Detrich HW
    Mol Biol Evol; 2006 Nov; 23(11):2008-16. PubMed ID: 16870682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin.
    Beers JM; Sidell BD
    Physiol Biochem Zool; 2011; 84(4):353-62. PubMed ID: 21743249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress.
    Giordano D; Corti P; Coppola D; Altomonte G; Xue J; Russo R; di Prisco G; Verde C
    Mar Genomics; 2021 Jun; 57():100831. PubMed ID: 33250437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes.
    Keenan KA; Grove TJ; Oldham CA; O'Brien KM
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Feb; 204():9-26. PubMed ID: 27836743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia.
    Qi D; Chao Y; Zhao Y; Xia M; Wu R
    Fish Physiol Biochem; 2018 Apr; 44(2):557-571. PubMed ID: 29230594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish.
    Yergeau DA; Cornell CN; Parker SK; Zhou Y; Detrich HW
    Dev Biol; 2005 Jul; 283(1):97-112. PubMed ID: 15890331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Antarctic hemoglobinless icefish, fifty five years later: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity.
    Garofalo F; Pellegrino D; Amelio D; Tota B
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):10-28. PubMed ID: 19401238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphometrics and ultrastructure of myocardial tissue in Notothenioid fishes.
    Johnston IA; Harrison P
    Fish Physiol Biochem; 1987 Jan; 3(1):1-6. PubMed ID: 24233247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.
    Detrich HW; Amemiya CT
    Integr Comp Biol; 2010 Dec; 50(6):1009-17. PubMed ID: 21082069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin.
    Cheng CH; Chen L; Near TJ; Jin Y
    Mol Biol Evol; 2003 Nov; 20(11):1897-908. PubMed ID: 12885956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression and tissue distribution of cytoglobin and myoglobin in the Amphibia and Reptilia: possible compensation of myoglobin with cytoglobin in skeletal muscle cells of anurans that lack the myoglobin gene.
    Xi Y; Obara M; Ishida Y; Ikeda S; Yoshizato K
    Gene; 2007 Aug; 398(1-2):94-102. PubMed ID: 17560742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular ecophysiology of Antarctic notothenioid fishes.
    Cheng CH; Detrich HW
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2215-32. PubMed ID: 17553777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.