These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9097078)

  • 21. Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways.
    Braet K; Paemeleire K; D'Herde K; Sanderson MJ; Leybaert L
    Eur J Neurosci; 2001 Jan; 13(1):79-91. PubMed ID: 11135006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP stimulates calcium-dependent glutamate release from cultured astrocytes.
    Jeremic A; Jeftinija K; Stevanovic J; Glavaski A; Jeftinija S
    J Neurochem; 2001 Apr; 77(2):664-75. PubMed ID: 11299329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach.
    Höfer T; Venance L; Giaume C
    J Neurosci; 2002 Jun; 22(12):4850-9. PubMed ID: 12077182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intercellular Ca(2+) waves induce temporally and spatially distinct intracellular Ca(2+) oscillations in glia.
    Strahonja-Packard A; Sanderson MJ
    Glia; 1999 Nov; 28(2):97-113. PubMed ID: 10533054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium signaling in and between brain astrocytes and endothelial cells.
    Paemeleire K
    Acta Neurol Belg; 2002 Sep; 102(3):137-40. PubMed ID: 12400252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium/calcium exchange in rat cortical astrocytes.
    Goldman WF; Yarowsky PJ; Juhaszova M; Krueger BK; Blaustein MP
    J Neurosci; 1994 Oct; 14(10):5834-43. PubMed ID: 7523629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipase c/inositol 1,4,5-triphosphate pathway in astrocytes from the dorsal spinal cord.
    Idestrup CP; Salter MW
    Neuroscience; 1998 Oct; 86(3):913-23. PubMed ID: 9692727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks.
    Goldberg M; De Pittà M; Volman V; Berry H; Ben-Jacob E
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20865153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.
    Tjalkens RB; Zoran MJ; Mohl B; Barhoumi R
    Brain Res; 2006 Oct; 1113(1):210-9. PubMed ID: 16934782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations.
    Parri HR; Crunelli V
    Neuroscience; 2003; 120(4):979-92. PubMed ID: 12927204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasma albumin is a potent trigger of calcium signals and DNA synthesis in astrocytes.
    Nadal A; Fuentes E; Pastor J; McNaughton PA
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1426-30. PubMed ID: 7877995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes.
    Venance L; Stella N; Glowinski J; Giaume C
    J Neurosci; 1997 Mar; 17(6):1981-92. PubMed ID: 9045727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fundamental role for the nitric oxide-G-kinase signaling pathway in mediating intercellular Ca(2+) waves in glia.
    Willmott NJ; Wong K; Strong AJ
    J Neurosci; 2000 Mar; 20(5):1767-79. PubMed ID: 10684878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular mechanism for spontaneous calcium oscillations in astrocytes.
    Wang TF; Zhou C; Tang AH; Wang SQ; Chai Z
    Acta Pharmacol Sin; 2006 Jul; 27(7):861-8. PubMed ID: 16787570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An extracellular signaling component in propagation of astrocytic calcium waves.
    Hassinger TD; Guthrie PB; Atkinson PB; Bennett MV; Kater SB
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13268-73. PubMed ID: 8917580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes.
    Sheppard CA; Simpson PB; Sharp AH; Nucifora FC; Ross CA; Lange GD; Russell JT
    J Neurochem; 1997 Jun; 68(6):2317-27. PubMed ID: 9166724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unidirectional interaction between two intracellular calcium stores in rat phaeochromocytoma (PC12) cells.
    Reber BF; Stucki JW; Reuter H
    J Physiol; 1993 Aug; 468():711-27. PubMed ID: 8254531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes.
    Kazantsev VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):010901. PubMed ID: 19256994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photolytic flash-induced intercellular calcium waves using caged calcium ionophore in cultured astrocytes from newborn rats.
    Iwabuchi S; Kawahara K; Makisaka K; Sato H
    Exp Brain Res; 2002 Sep; 146(1):103-16. PubMed ID: 12192584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation.
    Scemes E; Suadicani SO; Spray DC
    J Neurosci; 2000 Feb; 20(4):1435-45. PubMed ID: 10662834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.