These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9097078)

  • 41. Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration.
    Ullah G; Jung P; Cornell-Bell AH
    Cell Calcium; 2006 Mar; 39(3):197-208. PubMed ID: 16330095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Albumin elicits calcium signals from astrocytes in brain slices from neonatal rat cortex.
    Nadal A; Sul JY; Valdeolmillos M; McNaughton PA
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):711-6. PubMed ID: 9596793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Confocal imaging of Ca2+ signaling in cultured rat retinal pigment epithelial cells during mechanical and pharmacologic stimulation.
    Stalmans P; Himpens B
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):176-87. PubMed ID: 9008642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intercellular calcium waves mediated by inositol trisphosphate.
    Sanderson MJ
    Ciba Found Symp; 1995; 188():175-89; discussion 189-94. PubMed ID: 7587616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Serotonin-induced intercellular calcium waves in salivary glands of the blowfly Calliphora erythrocephala.
    Zimmermann B; Walz B
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):17-28. PubMed ID: 9097929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat.
    Haughey NJ; Holden CP; Nath A; Geiger JD
    J Neurochem; 1999 Oct; 73(4):1363-74. PubMed ID: 10501179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel Ca2+-induced Ca2+ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors.
    Wissing F; Nerou EP; Taylor CW
    Biochem J; 2002 Feb; 361(Pt 3):605-11. PubMed ID: 11802790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased intercellular communication in mouse astrocytes exposed to hyposmotic shocks.
    Scemes E; Spray DC
    Glia; 1998 Sep; 24(1):74-84. PubMed ID: 9700491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes.
    Pizzo P; Burgo A; Pozzan T; Fasolato C
    J Neurochem; 2001 Oct; 79(1):98-109. PubMed ID: 11595762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells.
    Newman EA
    J Neurosci; 2001 Apr; 21(7):2215-23. PubMed ID: 11264297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arachidonic acid in astrocytes blocks Ca(2+) oscillations by inhibiting store-operated Ca(2+) entry, and causes delayed Ca(2+) influx.
    Sergeeva M; Strokin M; Wang H; Ubl JJ; Reiser G
    Cell Calcium; 2003 Apr; 33(4):283-92. PubMed ID: 12618149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption of actin cytoskeleton in cultured rat astrocytes suppresses ATP- and bradykinin-induced [Ca(2+)](i) oscillations by reducing the coupling efficiency between Ca(2+) release, capacitative Ca(2+) entry, and store refilling.
    Sergeeva M; Ubl JJ; Reiser G
    Neuroscience; 2000; 97(4):765-9. PubMed ID: 10842022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions.
    Blomstrand F; Aberg ND; Eriksson PS; Hansson E; Rönnbäck L
    Neuroscience; 1999; 92(1):255-65. PubMed ID: 10392848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lead increases inositol 1,4,5-trisphosphate levels but does not interfere with calcium transients in primary rat astrocytes.
    Dave V; Vitarella D; Aschner JL; Fletcher P; Kimelberg HK; Aschner M
    Brain Res; 1993 Jul; 618(1):9-18. PubMed ID: 8402182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26.
    Braet K; Vandamme W; Martin PE; Evans WH; Leybaert L
    Cell Calcium; 2003 Jan; 33(1):37-48. PubMed ID: 12526886
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Octanol, a gap junction uncoupling agent, changes intracellular [H+] in rat astrocytes.
    Pappas CA; Rioult MG; Ransom BR
    Glia; 1996 Jan; 16(1):7-15. PubMed ID: 8787769
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spontaneous changes in intracellular calcium concentration in type I astrocytes from rat cerebral cortex in primary culture.
    Fatatis A; Russell JT
    Glia; 1992; 5(2):95-104. PubMed ID: 1349589
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex.
    Peters O; Schipke CG; Hashimoto Y; Kettenmann H
    J Neurosci; 2003 Oct; 23(30):9888-96. PubMed ID: 14586018
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors.
    Simpson PB; Holtzclaw LA; Langley DB; Russell JT
    J Neurosci Res; 1998 May; 52(4):468-82. PubMed ID: 9589392
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A model for the propagation of intercellular calcium waves.
    Sneyd J; Charles AC; Sanderson MJ
    Am J Physiol; 1994 Jan; 266(1 Pt 1):C293-302. PubMed ID: 8304425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.