These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9097939)

  • 1. Cytoplasmic calcium buffers in intact human red cells.
    Tiffert T; Lew VL
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):139-54. PubMed ID: 9097939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent Ca2+ dissociation constant of Ca2+ chelators incorporated non-disruptively into intact human red cells.
    Tiffert T; Lew VL
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):403-10. PubMed ID: 9423182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells.
    Tiffert T; Etzion Z; Bookchin RM; Lew VL
    J Physiol; 1993 May; 464():529-44. PubMed ID: 8229816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the calcium pump by high cytosolic Ca2+ in intact human red blood cells.
    Pereira AC; Samellas D; Tiffert T; Lew VL
    J Physiol; 1993 Feb; 461():63-73. PubMed ID: 8394428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells.
    Tiffert T; Garcia-Sancho J; Lew VL
    Biochim Biophys Acta; 1984 Jun; 773(1):143-56. PubMed ID: 6428450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform ionophore A23187 distribution and cytoplasmic calcium buffering in intact human red cells.
    Simonsen LO; Gomme J; Lew VL
    Biochim Biophys Acta; 1982 Nov; 692(3):431-40. PubMed ID: 6293570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.
    Flatman PW; Lew VL
    J Physiol; 1980 Aug; 305():13-30. PubMed ID: 6777486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intracellular magnesium on calcium extrusion by the plasma membrane calcium pump of intact human red cells.
    Raftos JE; Lew VL
    J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):63-72. PubMed ID: 8583416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hysteretic activation of the Ca2+ pump revealed by calcium transients in human red cells.
    Scharff O; Foder B; Skibsted U
    Biochim Biophys Acta; 1983 May; 730(2):295-305. PubMed ID: 6221761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump.
    Dagher G; Lew VL
    J Physiol; 1988 Dec; 407():569-86. PubMed ID: 3151497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ionophore A23187 upon membrane function and ion movement in human and toad erythrocytes.
    Lake W; Rasmussen H; Goodman DB
    J Membr Biol; 1977 Apr; 32(1-2):93-113. PubMed ID: 404430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx.
    Simonsen LO; Harbak H; Bennekou P
    Blood Cells Mol Dis; 2011 Dec; 47(4):214-25. PubMed ID: 21962619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells.
    Etzion Z; Tiffert T; Bookchin RM; Lew VL
    J Clin Invest; 1993 Nov; 92(5):2489-98. PubMed ID: 8227363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An estimate of rapid cytoplasmic calcium buffering in a single smooth muscle cell.
    Daub B; Ganitkevich VYa
    Cell Calcium; 2000 Jan; 27(1):3-13. PubMed ID: 10726206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells.
    Lew VL; Garcia-Sancho J
    Cell Calcium; 1985 Apr; 6(1-2):15-23. PubMed ID: 3926318
    [No Abstract]   [Full Text] [Related]  

  • 17. Modulation of Na+,Ca2+ exchange current by EGTA calcium buffering in giant cardiac membrane patches.
    Kabakov AY; Hilgemann DW
    Biochim Biophys Acta; 1995 Dec; 1240(2):142-8. PubMed ID: 8541285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-activated K+ channel and the activation of Ca2+ influx in vanadate-treated red blood cells.
    Varecka L; Peterajová E; Sevcík J
    Gen Physiol Biophys; 1997 Dec; 16(4):339-57. PubMed ID: 9595303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton fluxes associated with the Ca pump in human red blood cells.
    Milanick MA
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C552-62. PubMed ID: 2156439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.