These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 909798)

  • 1. Inhibition of pancreatic ribonuclease by 2'-5' and 3'-5' oligonucleotides.
    White MD; Bauer S; Lapidot Y
    Nucleic Acids Res; 1977 Sep; 4(9):3029-38. PubMed ID: 909798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state kinetic studies of the inhibitory action of Zn2+ on ribonuclease T1 catalysis.
    Itaya M; Inoue Y
    Biochem J; 1982 Nov; 207(2):357-62. PubMed ID: 6818948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of catalysis by ribonuclease U2. Steady-state kinetics for transphosphorylation of oligonucleotide and synthetic substrates.
    Yasuda T; Inoue Y
    Biochemistry; 1982 Jan; 21(2):364-9. PubMed ID: 7074019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic synthesis of dinucleotides and trinucleotides with RNases U2, N1, and a non-specific RNase from B. subtilis.
    Uchida T; Funayama-Machida C
    J Biochem; 1977 May; 81(5):1237-46. PubMed ID: 408330
    [No Abstract]   [Full Text] [Related]  

  • 5. CD studies on ribonuclease A - oligonucleotides interactions.
    White MD; Keren-Zur M; Lapidot Y
    Nucleic Acids Res; 1977 Apr; 4(4):843-52. PubMed ID: 866194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsites and catalytic mechanism of ribonuclease T: kinetic studies using GpC and GpU as substrates.
    Zabinski M; Walz FG
    Arch Biochem Biophys; 1976 Aug; 175(2):558-64. PubMed ID: 8711
    [No Abstract]   [Full Text] [Related]  

  • 7. Interaction of diphtheria toxin with adenylyl-(3',5')-uridine 3'-monophosphate. II. The NAD-binding site and determinants of dinucleotide affinity.
    Collins CM; Collier RJ
    J Biol Chem; 1984 Dec; 259(24):15159-62. PubMed ID: 6511789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified procedure for the preparation of di- and triribonucleotides from pancreatic ribonuclease digest of RNA.
    Bauer S; White MD; Lapidot Y
    Nucleic Acids Res; 1975 Dec; 2(12):2355-64. PubMed ID: 1052545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribonuclease inhibitors from porcine thyroid and liver are slow, tight-binding inhibitors of bovine pancreatic ribonuclease A.
    Turner PM; Lerea KM; Kull FJ
    Biochem Biophys Res Commun; 1983 Aug; 114(3):1154-60. PubMed ID: 6615510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of temperature and concentrations of initial components on synthesis of internucleotide bond catalyzed by pancreatic ribonuclease].
    Kavunenko AP; Kalacheva TN; Tikhomirova-Sidorova NS; Iakunitskaia LM
    Biokhimiia; 1975; 40(4):755-61. PubMed ID: 1203386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Specificity of the degradation and synthesis of dinucleoside monophosphates by RNAase C2 of Asp. clavatus].
    Bezborodova SI; Guliaeva VI; Morozova VG
    Prikl Biokhim Mikrobiol; 1975; 11(1):9-13. PubMed ID: 236554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-Ribosyl-6-methyluracil as a phosphate acceptor in the synthesis of the internucleotide bond catalyzed by pancreatic ribonuclease.
    Kavunenko AP; Sidorova NS
    Nucleic Acids Res; 1976 Apr; 3(4):1073-9. PubMed ID: 1272802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of rat liver particulate neutral ribonuclease and comparison of properties with pancreas and serum ribonucleases.
    Bartholeyns J; Baudhuin P
    Biochem J; 1977 Jun; 164(3):675-83. PubMed ID: 19011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hypermodified bases in transfer RNA. Solution properties of dinucleoside monophosphates.
    Watts MT; Tinoco I
    Biochemistry; 1978 Jun; 17(12):2455-63. PubMed ID: 678525
    [No Abstract]   [Full Text] [Related]  

  • 15. The pK(a) of the internucleotidic 2'-hydroxyl group in diribonucleoside (3'-->5') monophosphates.
    Acharya S; Földesi A; Chattopadhyaya J
    J Org Chem; 2003 Mar; 68(5):1906-10. PubMed ID: 12608809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A directed alteration of ribonuclease specificity. Hydrolysis of polyribonucleotides containing modified cytosine bases.
    Mazo AM; Schienker VS; Kisselev LL
    Mol Biol Rep; 1975 Oct; 2(3):233-9. PubMed ID: 172781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and selective cleavage of RNA oligonucleotides by calix[4]arene-based synthetic metallonucleases.
    Cacciapaglia R; Casnati A; Mandolini L; Peracchi A; Reinhoudt DN; Salvio R; Sartori A; Ungaro R
    J Am Chem Soc; 2007 Oct; 129(41):12512-20. PubMed ID: 17880217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Topography of rRNA in ribosomes. Effect of pancreatic RNAse on small ribosomal subunits].
    Teterina NL; Kopylov AM; Bogdanov AA
    Biokhimiia; 1978 Feb; 43(2):229-34. PubMed ID: 348242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small molecule inhibitors of RNase A and related enzymes.
    Russo A; Acharya KR; Shapiro R
    Methods Enzymol; 2001; 341():629-48. PubMed ID: 11582810
    [No Abstract]   [Full Text] [Related]  

  • 20. [Preparatory extraction of 5'-oligoribonucleotides using ribonuclease from cobra venom].
    Vasilenko SK; Serbo NA; Ven'iaminova AG; Boldyreva LG; Budker VG
    Biokhimiia; 1976 Feb; 41(2):260-3. PubMed ID: 1276268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.