BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9098221)

  • 1. Consequences of using a simplified kinetic model for dynamic PET data.
    Coxson PG; Huesman RH; Borland L
    J Nucl Med; 1997 Apr; 38(4):660-7. PubMed ID: 9098221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability and reproducibility of rubidium-82 kinetic parameters in the myocardium of the anesthetized canine.
    Coxson PG; Brennan KM; Huesman RH; Lim S; Budinger TF
    J Nucl Med; 1995 Feb; 36(2):287-96. PubMed ID: 7830133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia.
    Yoshida K; Mullani N; Gould KL
    J Nucl Med; 1996 Oct; 37(10):1701-12. PubMed ID: 8862316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses.
    El Fakhri G; Sitek A; Guérin B; Kijewski MF; Di Carli MF; Moore SC
    J Nucl Med; 2005 Aug; 46(8):1264-71. PubMed ID: 16085581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography.
    Herrero P; Markham J; Shelton ME; Bergmann SR
    Circ Res; 1992 Mar; 70(3):496-507. PubMed ID: 1537087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic model-based factor analysis of dynamic sequences for 82-rubidium cardiac positron emission tomography.
    Klein R; Beanlands RS; Wassenaar RW; Thorn SL; Lamoureux M; DaSilva JN; Adler A; deKemp RA
    Med Phys; 2010 Aug; 37(8):3995-4010. PubMed ID: 20879561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model.
    Herrero P; Markham J; Shelton ME; Weinheimer CJ; Bergmann SR
    Circulation; 1990 Oct; 82(4):1377-86. PubMed ID: 2401071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics.
    Dekemp RA; Declerck J; Klein R; Pan XB; Nakazato R; Tonge C; Arumugam P; Berman DS; Germano G; Beanlands RS; Slomka PJ
    J Nucl Med; 2013 Apr; 54(4):571-7. PubMed ID: 23447656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis.
    Lautamäki R; George RT; Kitagawa K; Higuchi T; Merrill J; Voicu C; DiPaula A; Nekolla SG; Lima JA; Lardo AC; Bengel FM
    Eur J Nucl Med Mol Imaging; 2009 Apr; 36(4):576-86. PubMed ID: 18985343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction.
    Lin JW; Sciacca RR; Chou RL; Laine AF; Bergmann SR
    J Nucl Med; 2001 Feb; 42(2):201-8. PubMed ID: 11216517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabbit myocardial 82Rb kinetics and a compartmental model for blood flow estimation.
    Huang SC; Williams BA; Krivokapich J; Araujo L; Phelps ME; Schelbert HR
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1156-64. PubMed ID: 2784945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of variance in compartment model parameter estimates from dynamic PET data.
    Kamasak ME
    Med Phys; 2012 May; 39(5):2638-48. PubMed ID: 22559634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of wavelet transforms in analysis of time-activity data from cardiac PET.
    Lin JW; Laine AF; Akinboboye O; Bergmann SR
    J Nucl Med; 2001 Feb; 42(2):194-200. PubMed ID: 11216516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic rubidium-82 PET/CT as a novel tool for quantifying hemodynamic differences in renal blood flow using a one-tissue compartment model.
    van de Burgt A; van Velden FHP; Kwakkenbos K; Smit F; de Geus-Oei LF; Dekkers IA
    Med Phys; 2024 Jun; 51(6):4069-4080. PubMed ID: 38709908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of serial changes in absolute myocardial perfusion with 82Rb PET.
    deKemp RA; Ruddy TD; Hewitt T; Dalipaj MM; Beanlands RS
    J Nucl Med; 2000 Aug; 41(8):1426-35. PubMed ID: 10945537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The noninvasive determination of resting myocardial blood flow in patients using 82 Rb in comparison with the argon method].
    Reske SN; Henrich MM; Mate E; Weller R; Glatting G; Grimmel S; Weismüller R; Stollfuss J; Hombach V
    Nuklearmedizin; 1993 Dec; 32(6):276-81. PubMed ID: 8295824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracer kinetic model of regional pulmonary function using positron emission tomography.
    Galletti GG; Venegas JG
    J Appl Physiol (1985); 2002 Sep; 93(3):1104-14. PubMed ID: 12183508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Population" approach improves parameter estimation of kinetic models from dynamic PET data.
    Bertoldo A; Sparacino G; Cobelli C
    IEEE Trans Med Imaging; 2004 Mar; 23(3):297-306. PubMed ID: 15027522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models.
    Choi Y; Huang SC; Hawkins RA; Kim JY; Kim BT; Hoh CK; Chen K; Phelps ME; Schelbert HR
    J Nucl Med; 1999 Jun; 40(6):1045-55. PubMed ID: 10452323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind estimation of compartmental model parameters.
    Di Bella EV; Clackdoyle R; Gullberg GT
    Phys Med Biol; 1999 Mar; 44(3):765-80. PubMed ID: 10211809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.