These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 9099059)
21. Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. Overcashier DE; Patapoff TW; Hsu CC J Pharm Sci; 1999 Jul; 88(7):688-95. PubMed ID: 10393566 [TBL] [Abstract][Full Text] [Related]
22. Multi-Point Wireless Temperature Sensing System for Monitoring Pharmaceutical Lyophilization. Jiang X; Zhu T; Kodama T; Raghunathan N; Alexeenko A; Peroulis D Front Chem; 2018; 6():288. PubMed ID: 30065924 [TBL] [Abstract][Full Text] [Related]
23. Correlation of laboratory and production freeze drying cycles. Kuu WY; Hardwick LM; Akers MJ Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610 [TBL] [Abstract][Full Text] [Related]
24. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying. Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928 [TBL] [Abstract][Full Text] [Related]
25. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810 [TBL] [Abstract][Full Text] [Related]
26. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy. Jeeraruangrattana Y; Smith G; Polygalov E; Ermolina I Eur J Pharm Biopharm; 2020 Jul; 152():144-163. PubMed ID: 32353532 [TBL] [Abstract][Full Text] [Related]
27. Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity. Yu T; Marx R; Hinds M; Schott N; Gong E; Yoon S; Kessler W AAPS PharmSciTech; 2024 Oct; 25(8):245. PubMed ID: 39419936 [TBL] [Abstract][Full Text] [Related]
28. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. Pikal MJ; Shah S; Senior D; Lang JE J Pharm Sci; 1983 Jun; 72(6):635-50. PubMed ID: 6875825 [TBL] [Abstract][Full Text] [Related]
29. The effect of dryer load on freeze drying process design. Patel SM; Jameel F; Pikal MJ J Pharm Sci; 2010 Oct; 99(10):4363-79. PubMed ID: 20737639 [TBL] [Abstract][Full Text] [Related]
30. The graphical design space for the primary drying phase of freeze Drying: Factors affecting the dried product layer resistance. Srinivasan JM; Sacha GA; Nail SL Int J Pharm; 2023 Jan; 630():122417. PubMed ID: 36410667 [TBL] [Abstract][Full Text] [Related]
31. Cycle Development in a Mini-Freeze Dryer: Evaluation of Manometric Temperature Measurement in Small-Scale Equipment. Wenzel T; Gieseler M; Abdul-Fattah AM; Gieseler H AAPS PharmSciTech; 2021 Apr; 22(4):143. PubMed ID: 33903988 [TBL] [Abstract][Full Text] [Related]
32. Optimizing lyophilization primary drying: A vaccine case study with experimental and modeling techniques. Najarian J; Metsi-Guckel E; Renawala HK; Grosse D; Sims A; Walter A; Sarkar A; Karande A Int J Pharm; 2024 Jun; 659():124168. PubMed ID: 38663644 [TBL] [Abstract][Full Text] [Related]
33. Determination of pressure resistance of a partially stoppered vial by using a coupled CFD-0D model of lyophilization. Kamenik B; Hriberšek M; Zadravec M Eur J Pharm Biopharm; 2022 Jun; 175():53-64. PubMed ID: 35562001 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying. Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826 [TBL] [Abstract][Full Text] [Related]
35. Scale-Up Procedure for Primary Drying Process in Lyophilizer by Using the Vial Heat Transfer and the Drying Resistance. Kawasaki H; Shimanouchi T; Yamamoto M; Takahashi K; Kimura Y Chem Pharm Bull (Tokyo); 2018; 66(11):1048-1056. PubMed ID: 30381657 [TBL] [Abstract][Full Text] [Related]
36. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization. Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415 [TBL] [Abstract][Full Text] [Related]
37. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves. Chouvenc P; Vessot S; Andrieu J; Vacus P PDA J Pharm Sci Technol; 2005; 59(5):298-309. PubMed ID: 16316065 [TBL] [Abstract][Full Text] [Related]
38. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying. Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910 [TBL] [Abstract][Full Text] [Related]
39. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. Lietta E; Colucci D; Distefano G; Fissore D J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699 [TBL] [Abstract][Full Text] [Related]
40. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. Roy ML; Pikal MJ J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]