These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9099611)

  • 1. Microglial development is altered in immature spinal cord by exposure to radiation.
    Gilmore SA; Sims TJ; Davies DL; Durgun MB
    Int J Dev Neurosci; 1997 Feb; 15(1):1-14. PubMed ID: 9099611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial development in primary cultures established from normal and X-irradiated neonatal spinal cord.
    Sims TJ; Davies DL; Gilmore SA
    Glia; 1994 Dec; 12(4):319-28. PubMed ID: 7890334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation-induced modulation of the microglial population in the normal and injured mature spinal cord.
    Gilmore SA; Phillips N; Liu KM; Houlé JD
    Exp Neurol; 2003 Jul; 182(1):169-79. PubMed ID: 12821387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord.
    Gilmore SA; Sims TJ
    J Anat; 1997 Jan; 190 ( Pt 1)(Pt 1):5-21. PubMed ID: 9034878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.
    Li YQ; Wong CS
    Radiat Res; 2000 Sep; 154(3):268-76. PubMed ID: 10956432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat.
    Fujimoto Y; Yamasaki T; Tanaka N; Mochizuki Y; Kajihara H; Ikuta Y; Ochi M
    Eur Spine J; 2006 Feb; 15(2):223-33. PubMed ID: 16292632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the rat corticospinal tract through an altered glial environment.
    Pippenger MA; Sims TJ; Gilmore SA
    Brain Res Dev Brain Res; 1990 Aug; 55(1):43-50. PubMed ID: 2208640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and secretory mechanisms related to delayed radiation-induced microvessel dysfunction in the spinal cord of rats.
    Siegal T; Pfeffer MR; Meltzer A; Shezen E; Nimrod A; Ezov N; Ovadia H
    Int J Radiat Oncol Biol Phys; 1996 Oct; 36(3):649-59. PubMed ID: 8948350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of metallothionein in astrocytes and microglia in the spinal cord from the myelin-deficient jimpy mouse.
    Vela JM; Hidalgo J; González B; Castellano B
    Brain Res; 1997 Sep; 767(2):345-55. PubMed ID: 9367267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perinodal astrocytic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord.
    Sims TJ; Waxman SG; Black JA; Gilmore SA
    Brain Res; 1985 Jul; 337(2):321-31. PubMed ID: 4027576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics.
    Molet J; Mauborgne A; Diallo M; Armand V; Geny D; Villanueva L; Boucher Y; Pohl M
    J Neurochem; 2016 Jan; 136(1):133-47. PubMed ID: 26440453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryosections of pre-irradiated adult rat spinal cord tissue support axonal regeneration in vitro.
    Wilson N; Esfandiary E; Bedi KS
    Int J Dev Neurosci; 2000 Dec; 18(8):735-41. PubMed ID: 11154843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionizing radiation induces astrocyte gliosis through microglia activation.
    Hwang SY; Jung JS; Kim TH; Lim SJ; Oh ES; Kim JY; Ji KA; Joe EH; Cho KH; Han IO
    Neurobiol Dis; 2006 Mar; 21(3):457-67. PubMed ID: 16202616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of microglial and astrocytic response in the adult rat lumbar spinal cord following middle cerebral artery occlusion.
    Wu YP; Ling EA
    Exp Brain Res; 1998 Jan; 118(2):235-42. PubMed ID: 9547093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord.
    Gingras M; Gagnon V; Minotti S; Durham HD; Berthod F
    J Neurosci Methods; 2007 Jun; 163(1):111-8. PubMed ID: 17445905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo.
    Liu JL; Tian DS; Li ZW; Qu WS; Zhan Y; Xie MJ; Yu ZY; Wang W; Wu G
    Brain Res; 2010 Feb; 1316():101-11. PubMed ID: 20044983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of sciatic nerve segments into normal and glia-depleted spinal cords.
    Sims TJ; Durgun MB; Gilmore SA
    Exp Brain Res; 1999 Apr; 125(4):495-501. PubMed ID: 10323296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent isolation and characterization of oligodendrocytes, microglia and astrocytes from adult human spinal cord.
    Whittemore SR; Sanon HR; Wood PM
    Int J Dev Neurosci; 1993 Dec; 11(6):755-64. PubMed ID: 7907836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regrowth of dorsal root axons into a radiation-induced glial-deficient environment in the spinal cord.
    Sims TJ; Gilmore SA
    Brain Res; 1994 Jan; 634(1):113-26. PubMed ID: 7512425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.