These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 9099689)
1. 13C and 31P NMR studies on the effects of increased plasma free fatty acids on intramuscular glucose metabolism in the awake rat. Jucker BM; Rennings AJ; Cline GW; Shulman GI J Biol Chem; 1997 Apr; 272(16):10464-73. PubMed ID: 9099689 [TBL] [Abstract][Full Text] [Related]
2. Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle. Jucker BM; Barucci N; Shulman GI Am J Physiol; 1999 Sep; 277(3):E505-12. PubMed ID: 10484363 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study. Jucker BM; Cline GW; Barucci N; Shulman GI Diabetes; 1999 Jan; 48(1):134-40. PubMed ID: 9892234 [TBL] [Abstract][Full Text] [Related]
4. In vivo NMR investigation of intramuscular glucose metabolism in conscious rats. Jucker BM; Rennings AJ; Cline GW; Petersen KF; Shulman GI Am J Physiol; 1997 Jul; 273(1 Pt 1):E139-48. PubMed ID: 9252490 [TBL] [Abstract][Full Text] [Related]
5. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Kim JK; Wi JK; Youn JH Diabetes; 1996 Apr; 45(4):446-53. PubMed ID: 8603766 [TBL] [Abstract][Full Text] [Related]
6. Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans. Laurent D; Petersen KF; Russell RR; Cline GW; Shulman GI Am J Physiol; 1998 Jan; 274(1):E130-8. PubMed ID: 9458758 [TBL] [Abstract][Full Text] [Related]
7. Normalization of skeletal muscle glycogen synthesis and glycolysis in rosiglitazone-treated Zucker fatty rats: an in vivo nuclear magnetic resonance study. Jucker BM; Schaeffer TR; Haimbach RE; McIntosh TS; Chun D; Mayer M; Ohlstein DH; Davis HM; Smith SA; Cobitz AR; Sarkar SK Diabetes; 2002 Jul; 51(7):2066-73. PubMed ID: 12086934 [TBL] [Abstract][Full Text] [Related]
8. Flux control in the rat gastrocnemius glycogen synthesis pathway by in vivo 13C/31P NMR spectroscopy. Chase JR; Rothman DL; Shulman RG Am J Physiol Endocrinol Metab; 2001 Apr; 280(4):E598-607. PubMed ID: 11254467 [TBL] [Abstract][Full Text] [Related]
9. Chronic physiologic hyperinsulinemia impairs suppression of plasma free fatty acids and increases de novo lipogenesis but does not cause dyslipidemia in conscious normal rats. Koopmans SJ; Kushwaha RS; DeFronzo RA Metabolism; 1999 Mar; 48(3):330-7. PubMed ID: 10094109 [TBL] [Abstract][Full Text] [Related]
10. Effects of FFA on insulin-stimulated glucose fluxes and muscle glycogen synthase activity in rats. Park JY; Kim CH; Hong SK; Suh KI; Lee KU Am J Physiol; 1998 Aug; 275(2):E338-44. PubMed ID: 9688637 [TBL] [Abstract][Full Text] [Related]
11. Chronic free fatty acid infusion in rats results in insulin resistance but no alteration in insulin-responsive glucose transporter levels in skeletal muscle. Magnan C; Gilbert M; Kahn BB Lipids; 1996 Nov; 31(11):1141-9. PubMed ID: 8934446 [TBL] [Abstract][Full Text] [Related]
12. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. Dresner A; Laurent D; Marcucci M; Griffin ME; Dufour S; Cline GW; Slezak LA; Andersen DK; Hundal RS; Rothman DL; Petersen KF; Shulman GI J Clin Invest; 1999 Jan; 103(2):253-9. PubMed ID: 9916137 [TBL] [Abstract][Full Text] [Related]
13. Acute effect of growth hormone to induce peripheral insulin resistance is independent of FFA and insulin levels in rats. Kim JK; Choi CS; Youn JH Am J Physiol; 1999 Oct; 277(4):E742-9. PubMed ID: 10516135 [TBL] [Abstract][Full Text] [Related]
14. Effect of free fatty acids on glucose uptake and nonoxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. Yki-Järvinen H; Puhakainen I; Koivisto VA J Clin Endocrinol Metab; 1991 Jun; 72(6):1268-77. PubMed ID: 2026747 [TBL] [Abstract][Full Text] [Related]
15. 13C nuclear magnetic resonance study of glycogen resynthesis in muscle after glycogen-depleting exercise in healthy men receiving an infusion of lipid emulsion. Delmas-Beauvieux MC; Quesson B; Thiaudière E; Gallis JL; Canioni P; Gin H Diabetes; 1999 Feb; 48(2):327-33. PubMed ID: 10334309 [TBL] [Abstract][Full Text] [Related]
16. Applications of NMR spectroscopy to study muscle glycogen metabolism in man. Roden M; Shulman GI Annu Rev Med; 1999; 50():277-90. PubMed ID: 10073278 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of fatty acid-induced inhibition of glucose uptake. Boden G; Chen X; Ruiz J; White JV; Rossetti L J Clin Invest; 1994 Jun; 93(6):2438-46. PubMed ID: 8200979 [TBL] [Abstract][Full Text] [Related]
18. Thiazolidinediones increase plasma-adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Oakes ND; Thalén PG; Jacinto SM; Ljung B Diabetes; 2001 May; 50(5):1158-65. PubMed ID: 11334421 [TBL] [Abstract][Full Text] [Related]
19. Glucose-fatty acid cycle operates in humans at the levels of both whole body and skeletal muscle during low and high physiological plasma insulin concentrations. Vaag AA; Handberg A; Skøtt P; Richter EA; Beck-Nielsen H Eur J Endocrinol; 1994 Jan; 130(1):70-9. PubMed ID: 8124481 [TBL] [Abstract][Full Text] [Related]
20. Multiple defects of both hepatic and peripheral intracellular glucose processing contribute to the hyperglycaemia of NIDDM. Vaag A; Alford F; Henriksen FL; Christopher M; Beck-Nielsen H Diabetologia; 1995 Mar; 38(3):326-36. PubMed ID: 7758880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]