These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1317 related articles for article (PubMed ID: 9099745)

  • 1. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2.
    Prall OW; Sarcevic B; Musgrove EA; Watts CK; Sutherland RL
    J Biol Chem; 1997 Apr; 272(16):10882-94. PubMed ID: 9099745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry.
    Prall OW; Rogan EM; Musgrove EA; Watts CK; Sutherland RL
    Mol Cell Biol; 1998 Aug; 18(8):4499-508. PubMed ID: 9671459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function.
    Foster JS; Henley DC; Bukovsky A; Seth P; Wimalasena J
    Mol Cell Biol; 2001 Feb; 21(3):794-810. PubMed ID: 11154267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence.
    Carroll JS; Prall OW; Musgrove EA; Sutherland RL
    J Biol Chem; 2000 Dec; 275(49):38221-9. PubMed ID: 10991938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiestrogen inhibition of cell cycle progression in breast cancer cells in associated with inhibition of cyclin-dependent kinase activity and decreased retinoblastoma protein phosphorylation.
    Watts CK; Brady A; Sarcevic B; deFazio A; Musgrove EA; Sutherland RL
    Mol Endocrinol; 1995 Dec; 9(12):1804-13. PubMed ID: 8614416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells.
    Foster JS; Wimalasena J
    Mol Endocrinol; 1996 May; 10(5):488-98. PubMed ID: 8732680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible expression of cyclin D1 in T-47D human breast cancer cells is sufficient for Cdk2 activation and pRB hyperphosphorylation.
    Musgrove EA; Sarcevic B; Sutherland RL
    J Cell Biochem; 1996 Mar; 60(3):363-78. PubMed ID: 8867812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution.
    Planas-Silva MD; Weinberg RA
    Mol Cell Biol; 1997 Jul; 17(7):4059-69. PubMed ID: 9199341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase.
    Hsieh FF; Barnett LA; Green WF; Freedman K; Matushansky I; Skoultchi AI; Kelley LL
    Blood; 2000 Oct; 96(8):2746-54. PubMed ID: 11023508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2 activation and cell Cycle progression in MCF-7 breast cancer cells through differential regulation of cyclin E and p21(WAF1/Cip1).
    Lai A; Sarcevic B; Prall OW; Sutherland RL
    J Biol Chem; 2001 Jul; 276(28):25823-33. PubMed ID: 11337496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK2 is a target for retinoic acid-mediated growth inhibition in MCF-7 human breast cancer cells.
    Teixeira C; Pratt MA
    Mol Endocrinol; 1997 Aug; 11(9):1191-202. PubMed ID: 9259311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of cyclin-dependent kinase inactivation by progestins.
    Musgrove EA; Swarbrick A; Lee CS; Cornish AL; Sutherland RL
    Mol Cell Biol; 1998 Apr; 18(4):1812-25. PubMed ID: 9528753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip).
    Chen WJ; Chang CY; Lin JK
    Biochem Pharmacol; 2003 Jun; 65(11):1777-85. PubMed ID: 12781329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the melanoma cell cycle and regulation at the G1/S transition by 12-O-tetradecanoylphorbol-13-acetate (TPA) by modulation of CDK2 activity.
    Coppock DL; Buffolino P; Kopman C; Nathanson L
    Exp Cell Res; 1995 Nov; 221(1):92-102. PubMed ID: 7589260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip1/WAF1/Sdi1 in p53-mutated human epidermoid carcinoma A431 cells.
    Akiyama T; Yoshida T; Tsujita T; Shimizu M; Mizukami T; Okabe M; Akinaga S
    Cancer Res; 1997 Apr; 57(8):1495-501. PubMed ID: 9108451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caco-2 intestinal cell differentiation is associated with G1 arrest and suppression of CDK2 and CDK4.
    Ding QM; Ko TC; Evers BM
    Am J Physiol; 1998 Nov; 275(5):C1193-200. PubMed ID: 9814966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53.
    Rao S; Lowe M; Herliczek TW; Keyomarsi K
    Oncogene; 1998 Nov; 17(18):2393-402. PubMed ID: 9811471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes.
    McConnell BB; Gregory FJ; Stott FJ; Hara E; Peters G
    Mol Cell Biol; 1999 Mar; 19(3):1981-9. PubMed ID: 10022885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins.
    Sangfelt O; Erickson S; Castro J; Heiden T; Gustafsson A; Einhorn S; Grandér D
    Oncogene; 1999 May; 18(18):2798-810. PubMed ID: 10362250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclin D2 activates Cdk2 in preference to Cdk4 in human breast epithelial cells.
    Sweeney KJ; Sarcevic B; Sutherland RL; Musgrove EA
    Oncogene; 1997 Mar; 14(11):1329-40. PubMed ID: 9178893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.