BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 9099808)

  • 41. Distinct GABAA receptor alpha subunit mRNAs show differential patterns of expression in bovine brain.
    Wisden W; Morris BJ; Darlison MG; Hunt SP; Barnard EA
    Neuron; 1988 Dec; 1(10):937-47. PubMed ID: 2856089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clozapine and haloperidol differentially affect AMPA and kainate receptor subunit mRNA levels in rat cortex and striatum.
    Healy DJ; Meador-Woodruff JH
    Brain Res Mol Brain Res; 1997 Jul; 47(1-2):331-8. PubMed ID: 9221932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective reduction of GluR2 protein in adult hippocampal CA3 neurons following status epilepticus but prior to cell loss.
    Friedman LK
    Hippocampus; 1998; 8(5):511-25. PubMed ID: 9825961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-affinity kainate-type ion channels in rat cerebellar granule cells.
    Pemberton KE; Belcher SM; Ripellino JA; Howe JR
    J Physiol; 1998 Jul; 510 ( Pt 2)(Pt 2):401-20. PubMed ID: 9705992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physiological and molecular properties of AMPA/Kainate receptors expressed by striatal medium spiny neurons.
    Stefani A; Chen Q; Flores-Hernandez J; Jiao Y; Reiner A; Surmeier DJ
    Dev Neurosci; 1998; 20(2-3):242-52. PubMed ID: 9691198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies.
    Wenthold RJ; Trumpy VA; Zhu WS; Petralia RS
    J Biol Chem; 1994 Jan; 269(2):1332-9. PubMed ID: 8288598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distribution of the excitatory amino acid receptor subunits GluR2(4) in monkey hippocampus and colocalization with subunits GluR5-7 and NMDAR1.
    Siegel SJ; Janssen WG; Tullai JW; Rogers SW; Moran T; Heinemann SF; Morrison JH
    J Neurosci; 1995 Apr; 15(4):2707-19. PubMed ID: 7722624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7.
    Huntley GW; Rogers SW; Moran T; Janssen W; Archin N; Vickers JC; Cauley K; Heinemann SF; Morrison JH
    J Neurosci; 1993 Jul; 13(7):2965-81. PubMed ID: 8392536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum.
    Ripellino JA; Neve RL; Howe JR
    Neuroscience; 1998 Jan; 82(2):485-97. PubMed ID: 9466455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative localization of AMPA/kainate and kainate glutamate receptor subunit immunoreactivity in neurochemically identified subpopulations of neurons in the prefrontal cortex of the macaque monkey.
    Vickers JC; Huntley GW; Edwards AM; Moran T; Rogers SW; Heinemann SF; Morrison JH
    J Neurosci; 1993 Jul; 13(7):2982-92. PubMed ID: 7687283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons.
    Sahara Y; Noro N; Iida Y; Soma K; Nakamura Y
    J Neurosci; 1997 Sep; 17(17):6611-20. PubMed ID: 9254673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Homomeric and heteromeric ion channels formed from the kainate-type subunits GluR6 and KA2 have very small, but different, unitary conductances.
    Howe JR
    J Neurophysiol; 1996 Jul; 76(1):510-9. PubMed ID: 8836240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of RNA editing of the glutamate-receptor subunits GluR5 and GluR6 in granule cells during cerebellar development.
    Belcher SM; Howe JR
    Brain Res Mol Brain Res; 1997 Dec; 52(1):130-8. PubMed ID: 9450685
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution of glutamate receptor subunit proteins GluR2(4), GluR5/6/7, and NMDAR1 in the canine and primate cerebral cortex: a comparative immunohistochemical analysis.
    Hof PR; Vissavajjhala P; Rosenthal RE; Fiskum G; Morrison JH
    Brain Res; 1996 Jun; 723(1-2):77-89. PubMed ID: 8813384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relative concentrations and seizure-induced changes in mRNAs encoding three AMPA receptor subunits in hippocampus and cortex.
    Gold SJ; Hennegriff M; Lynch G; Gall CM
    J Comp Neurol; 1996 Feb; 365(4):541-55. PubMed ID: 8742301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum.
    Whitaker WR; Clare JJ; Powell AJ; Chen YH; Faull RL; Emson PC
    J Comp Neurol; 2000 Jun; 422(1):123-39. PubMed ID: 10842222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acute effects of ethanol on kainate receptors with different subunit compositions.
    Valenzuela CF; Cardoso RA
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1199-206. PubMed ID: 10027859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development.
    Bernard A; Khrestchatisky M
    J Neurochem; 1994 May; 62(5):2057-60. PubMed ID: 7512622
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Laminar segregation of the cortical plate during corticogenesis is accompanied by changes in glutamate receptor expression.
    Furuta A; Martin LJ
    J Neurobiol; 1999 Apr; 39(1):67-80. PubMed ID: 10213454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of non-N-methyl-D-aspartate glutamate receptor subunits in the olfactory epithelium.
    Thukral V; Chikaraishi D; Hunter DD; Wang JK
    Neuroscience; 1997 Jul; 79(2):411-24. PubMed ID: 9200725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.